Journal of Organometallic Chemistry, 420 (1991) 387–418 Elsevier Sequoia S.A., Lausanne JOM 22155

# Syntheses of dibenzo[b,e][1,4]dioxin derivatives via iron complexes, and further functionalizations via directed metallation

Richard C. Cambie, Sally J. Janssen, Peter S. Rutledge and Paul D. Woodgate \*

Department of Chemistry, University of Auckland, Private Bag, Auckland (New Zealand) (Received June 25th, 1991)

#### Abstract

Double nucleophilic aromatic substitution reactions between (cyclopentadienyl)( $\eta^{6}$ -1,2-dichlorobenzene)iron(1+) salts and substituted 1,2-benzenediols have been carried out under mild conditions to prepare [ $\eta^{6}$ -dibenzo[b,e][1,4]dioxin]iron(1+) complexes functionalized in the 1- or 2-position with an alkyl, aldehyde, carboxylic acid, methoxycarbonyl, carboxamide, or hydroxy group. 3-Methyl- and 4-methyl-( $\eta^{6}$ -1,2-dichlorobenzene)iron complexes were treated with substituted 1,2-benzenediols to effect functionalization of both aromatic rings of the heterocycle. The dibenzodioxin ligands were liberated routinely by irradiation with ultraviolet light. Directed deprotonation of the free functionalized dibenzodioxins with an alkyllithium reagent followed by quenching with a variety of electrophiles yielded further derivatives, including two new isoindolone systems.

#### Introduction

Interest in the synthesis of asymmetrically polysubstituted dibenzo [b,e] [1,4]dioxins has been stimulated by the discovery of the potent in vitro cytotoxicity and significant in vivo antitumour activity of N-[2-(dimethylamino)ethyl)]dibenzodioxin-1-carboxamide (1) [1]. Two main routes to dibenzodioxins are known, namely the self-condensation of 2-halogenophenols promoted by base [2,3] and the condensation of 1,2-benzenediols with activated chlorobenzenes [4.5]. Significant improvements in the yields obtained from the latter method have been made recently by Lee and Denny [6] using hexamethylphosphoric triamide (HMPT) as the solvent and metallic potassium as the base. Both of these approaches, however, require vigorous experimental conditions which may not be appropriate for the synthesis of polyfunctional dibenzodioxins. Moreover, it would be advantageous practically to use a solvent other than HMPT (use of tetrahydrofuran (THF), dimethylformamide (DMF), or sulpholane gave virtually no dibenzodioxins [6]). The formation of a mixture of regioisomeric dibenzodioxins (often very difficult to separate) when each of the coupling partners is unsymmetrical presents an additional problem. Activation of 1,2-dichlorobenzene by complexation with a tricarbonylchromium moiety [7] and reaction with an excess of the monopotassium salt of 1,2-ben-



zcncdiol gave a good yield of dibenzo[b,e][1,4]dioxin at relatively low temperature, but HMPT was again the preferred solvent. An alternative method which uses a cationic (cyclopentadienyl)iron complex to activate 1,2-dichlorobenzene towards nucleophilic substitutions has also been reported [8]. We report application of this latter method for the preparation of complexes of 1- and 2-substituted dibenzodioxins from reaction of 3- and 4-substituted 1,2-benzenediols with the substituted (cyclopentadienyl)( $\eta^6$ -1,2-dichlorobenzene) salts 46, 47 and 48 under mild conditions. We also report some reactions of the decomplexed dibenzodioxins with an alkyllithium reagent followed by treatment with a variety of electrophiles, leading to further functionalization of the heterocycle.

#### **Results and discussion**

For spectroscopic comparison purposes the parent dibenzo[b,e][1,4]dioxin (2) was prepared by the classic Ullman-type self-condensation of 2-chlorophenol [9]. Use of the tridentate phase transfer agent tris[2-(2-methoxyethoxy)ethyl]amine [10] and copper(I) chloride as catalysts in this reaction gave 2 in 50% yield, which represents a significant improvement over previous syntheses of this type from 2-chlorophenol (10-20%) [3]. Thermally promoted reaction of 2 with hexacarbonylchromium gave the Cr(CO)<sub>3</sub> complex **49** (58%) [7].

Cationic (cyclopentadienyl)iron complexes of 1,2-dichlorobenzene and of substituted 1,2-dichlorobenzenes were prepared by ligand exchange from ferrocene [11,12]. Product dibenzodioxin complexes resulting from reaction of these salts with 1,2-benzenediol and substituted 1,2-benzenediols are given in Table 1, together with the decomplexed dibenzodioxins subsequently obtained. Liberation of







(46;  $R^1 = R^2 = H$ 47;  $R^1 = Me, R^2 = H$ 48;  $R^1 = H, R^2 = Me$ )

a dibenzodioxin from its  $\eta^{6}$ -iron(1 + ) salt was achieved usually by irradiation [13] through quartz at 300 nm in degassed acetonitrile, although THF or CH<sub>2</sub>Cl<sub>2</sub> were used occasionally as solvent and a few photolyses were carried out at 254 nm. Decomplexation could also be effected by pyrolytic sublimation [14] (e.g. 52 afforded 4, 68%; 66/60 afforded 39/9, 71%), or by heating with excess N-bromosuccinimide (NBS) [15] in THF/MeOH (e.g. 52 afforded 4, 57%). The double nucleophilic aromatic substitution reactions afforded ( $\eta^6$ -dibenzodioxin)iron(1 + ) salts functionalized in the 2-position with methyl (51), formyl (52), carboxylic acid (53) and propanoic (54) substituents, and in the 1-position with hydroxy (55), carboxylic acid (56), methoxycarbonyl (57) and N-[2-(dimethylamino)ethylcarboxamide (58) [cf. 1] groups. In initial studies potassium carbonate was used as the base and THF [8] was used as the solvent for these coupling reactions. However, it was found that the use of DMF not only increased the rate of reaction considerably, but also resulted in higher yields of  $(n^6$ -dibenzodioxin)iron(1 + ) complexes. For example, the yield of 50 was 56% after 46.5 h at room temperature in THF, but 74% after only 1.5 h at room temperature in DMF; for the aldehyde 52 the corresponding figures were 32% after 44 h and 44% after 1.5 h. Thus a variety of  $(\eta^6$ -dibenzodioxin)CpFe<sup>+</sup> salts could be synthesized in good yield under very mild conditions [cf. 7]. Although in those cases which could lead to the formation of a mixture of regioisomers both coupled complexes were in fact formed (i.e. 66/60; 61/67; 62/69), there was a predictable and potentially exploitable variation in the ratio of the syn versus anti regioisomer (1.2/1.0; 1.6/1.0; 1.9/1.0, respectively) which reflects initial ipso attack preferentially on the more electrophilic chlorinebearing carbon of the  $(\eta^6-1, 2-dichlorobenzene)CpFe^+$  salt by the more nucleophilic phenoxide anion of the substituted 1,2-benzenediol.

Attempts to react the (cyclopentadienyl)iron(1 + ) salt of 1,2-dichlorobenzene with 4-(2-aminoethyl)-1,2-benzenediol hydrochloride with the aim of incorporating an amine directly into the dibenzodioxin carboxamide side-chain were less successful, affording an inseparable mixture of 46 and three other cationic complexes [cf. 16] in low combined yield. In the case of 2,3-dihydroxy-N-[2-(dimethylamino)ethyl benzamide as nucleophile a mixture of the unstable ( $\eta^6$ arene) $CpFe^+$  complex 58 and the free dibenzodioxin-1-carboxamide 1 was formed. Irradiation of this mixture in acetonitrile at 300 nm followed by chromatography afforded the biologically active amide 1 in an overall yield of 32%. This carboxamide was also prepared (89%) by heating methyl dibenzo[b,e][1,4]dioxin-1-carboxylate (7) with an excess of N, N-dimethyl-1,2-ethanediamine. The corresponding dibenzodioxin-2-carboxamide 11 was prepared indirectly by oxidation of the aldehyde CpFe<sup>+</sup> salt 52 to the carboxylic acid complex 53 with Jones reagent and then amidation with N, N-dimethyl-1,2-ethanediamine using 1.1'-carbonyldiimidazole (CDI) to activate the acid. This sequence afforded the complexed 2-carboxamide 63 as an unstable solid (27%), in addition to the free amide 11. The latter compound was also prepared from the non-complexed aldehyde 4, either by conversion (75%) directly [17] into the methyl ester 12 using sodium cyanide and barium manganate [18] in acetic acid/methanol followed by heating the ester with excess  $H_2N(CH_2)_2NMe_2$  at 110 °C, or by oxidation to the carboxylic acid (13) with Jones reagent (90%) followed by amidation at room temperature with  $CDI/H_2N(CH_2)_2NMe_2$  (94%). The corresponding dibenzodioxin 14 with a homologous 2-[N-(3-dimethylamino)propy]] side-chain was prepared similarly (94%) by amidation of 13 with  $CDI/H_2N(CH_2)_3NMe_2$ .

Attempted functionalization of the complexed ring of ( $\eta^6$ -dibenzodioxin)CpFe<sup>+</sup> (50) by nucleophilic addition of 2-lithiopropanenitrile followed by oxidative aromatization of the putative substituted cyclohexadienyl intermediate with NBS [cf. 15] returned only 50 (45%) and the free ligand (2) (19%).

Since the usual method of preparation of  $(\eta^6$ -arene)CpFe<sup>+</sup> salts by ligand exchange from ferrocene is catalyzed by AlCl<sub>3</sub>, one is restricted to the synthesis of complexes from 1,2-dichloroarenes which contain neither an additional electronwithdrawing group (e.g.  $CO_2R$ ), nor an electron-donating group containing lone pairs of electrons since these interact with the Lewis acid catalyst and thereby deactivate the arene towards formation of the salt. Thus, in order to form dibenzodioxin complexes carrying a methyl substituent on the ring  $\eta^6$ -bound to iron, and hence to provide a locus for further modification leading eventually to heterocycles substituted regioselectively on each aromatic ring, the CpFe<sup>+</sup> complexes 47 and 48 of 1,2-dichloro-4-methylbenzene and of 1,2-dichloro-3-methylbenzene were prepared and coupled with 1,2-benzenediol and with 4-methyl-1,2-benzenediol. The salt from reaction of 47 with 4-methyl-1,2-benzenediol was a mixture (1.2:1.0) of the anti (2,7)- and syn (2,8)-isomers **66** and **60** as shown by comparison of the <sup>1</sup>H and <sup>13</sup>C NMR spectra of the mixture of decomplexed dibenzodioxins (39) and (9) with those of a sample of 2,7-dimethyldibenzo [b,e] [1,4] dioxin (39) synthesized independently [19].

In order to investigate further functionalization of the decomplexed dibenzodioxins via directed lithiation-quenching sequences, the secondary amides 1, 11 and 29 as well as selected other derivatives were lithiated and then treated with an electrophile (Table 2). In the case of the parent heterocycle 2 deprotonation by

| Tab        | e 1                |                   |                                                    |                                                |                      |                  |                      |                          |                      |                                  |       |                                          |  |
|------------|--------------------|-------------------|----------------------------------------------------|------------------------------------------------|----------------------|------------------|----------------------|--------------------------|----------------------|----------------------------------|-------|------------------------------------------|--|
| Pref       | aration of s       | ubstituted        | 1 dibenzo[ <i>b</i> , <i>e</i> ][1,4]d             | ioxins                                         |                      |                  |                      |                          |                      |                                  |       |                                          |  |
|            | $R^2$              |                   | R <sup>1</sup>                                     | D3                                             | R                    |                  |                      | D3 R <sup>1</sup>        |                      |                                  |       |                                          |  |
| R1         |                    | ЮН                | K,CO                                               | R                                              | $\leq$               | , R <sup>2</sup> | R <sup>4</sup>       |                          | х<br>В <sup>2</sup>  |                                  |       |                                          |  |
|            | Д<br>Ц             | −_(<br>H<br>+     | 111 DN                                             |                                                | $\overline{\langle}$ | CH <sub>3</sub>  |                      |                          | <u> </u>             |                                  |       |                                          |  |
| <u>ں</u>   | $Fe^{+}FF_{6}^{-}$ |                   |                                                    | CpFe <sup>+</sup> PF <sub>6</sub> <sup>-</sup> |                      |                  |                      |                          |                      |                                  |       |                                          |  |
| Dic<br>Dic | hlorobenzen        | ie) 1,2-F         | Benzenediol                                        |                                                | (η <sup>6</sup> -Dib | enzodioxin)F     | eCp <sup>+</sup> con | nplex                    | Dibenz               | o[ <i>b</i> , <i>e</i> ][1,4]dio | xin   |                                          |  |
| CpF        | •+                 | א <u>י</u><br>אין |                                                    | R <sup>2</sup>                                 | Time                 | Product          | Yield                | m.p. (dec.)              | Time                 | Product                          | Yield | m.p.                                     |  |
|            | R <sup>I</sup> R   | 2                 |                                                    |                                                | ( <del>µ</del> )     |                  | (%)                  | () ° C)                  | ( <del>4</del> )     |                                  | (%)   | () () () () () () () () () () () () () ( |  |
| \$         | H H                | H                 | (                                                  | H                                              | 1.75                 | 50               | 74                   | 209-210                  | 3.5                  | 2                                | 94    | 119-120                                  |  |
| 4          | H H                | Η                 |                                                    | Me                                             | 4.5                  | 51               | 69                   | 194-196                  | 4.0                  | <b>e</b> D                       | 76    | 54.5- 55.5                               |  |
| \$         | н н                | Н                 |                                                    | СНО                                            | 4.0                  | 52               | 75                   | 211-213                  | 2.5                  | 4                                | 59    | 93- 96                                   |  |
| \$         | H H                | Н                 |                                                    | CO <sub>2</sub> H                              | 24.5                 | 53               | 81                   | 226-229                  | I                    |                                  |       |                                          |  |
| \$         | н н                | Н                 |                                                    | $(CH_2)_2 CO_2 H$                              | 28.0                 | 54               | 75                   | ı                        | 1.25                 | ŝ                                | 45    | 157-165                                  |  |
| 4          | H H                | НО                |                                                    | Н _                                            | 3.0                  | 55               | 100                  | Oil                      | 4.0                  | 9                                | 26    | 167-172                                  |  |
| \$         | H H                | co2               | H                                                  | Н                                              | 23.0                 | 56               | 50                   | oil                      | I                    |                                  |       |                                          |  |
| \$         | H H                | CO2               | Me                                                 | Н                                              | 1.5                  | 57               | 87                   | 220-223                  | 3.5                  | 7                                | 87    | 92- 94                                   |  |
| \$         | н н                | S<br>S            | VH(CH <sub>2</sub> ) <sub>2</sub> NMe <sub>2</sub> | Н                                              | 6.0                  | 58               | 11                   | Unstable solid           | 2.25                 | 1                                | 32    | 101 - 103                                |  |
| 4          | H H                | ø                 | 1                                                  | ø                                              | 2.0                  | 2                | 81                   | 257-261 °                | 1.25                 | 45                               | 18    | 230-270                                  |  |
| \$         | H H                | 9                 |                                                    | q                                              | 2.5                  | 65               | 55                   | Unstable solid           | ı                    |                                  |       |                                          |  |
| 47         | Me H               | Η                 |                                                    | Н                                              | 2.75                 | 59               | 55                   | 163-165                  | 1.5                  | 30                               | 69    | 54.5- 55.5                               |  |
| 47         | Me H               | Η                 |                                                    | Me                                             | 1.75                 | 66,60            | 52                   | 171-173                  | 3.5                  | 39,9                             | 83    | 81.5- 83.5                               |  |
| 47         | Me H               | Н                 |                                                    | СНО                                            | 3.0                  | 61,67            | 74                   | 214-216                  | 3.0                  | 10,40                            | 60    | 97 - 99                                  |  |
| <b>8</b> 4 | W H                | e H               |                                                    | Н                                              | 22.0                 | <b>68</b>        | 13                   | 159.5-160.5              | 1                    |                                  |       |                                          |  |
| <b>48</b>  | H W                | e H               |                                                    | CO <sub>2</sub> Me                             | 23.0                 | 62,69            | 22                   | 232.5–234.5 <sup>d</sup> |                      |                                  |       |                                          |  |
| a 6,7      | -Dihydroxyc        | xoumarin.         | <sup>b</sup> 2,3-Dihydroxypy1                      | ridine. <sup>c</sup> Also forme                | ed (10%)             | was a produc     | ct tentativ          | ely identified as 36     | . <sup>d</sup> Major | isomer 60.                       |       |                                          |  |



reaction with butyllithium at -23 °C followed by carbonation gave the carboxylic acid 15 (59%), together with the butyl ketone 16 (2%) derived from attack of butyllithium on the carboxylate group formed initially. Lithiation of N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin (1) followed by quenching with a variety of electrophiles yielded derivatives functionalized in the 9 position. This regiospecificity reflects lithiation directed by a dioxin oxygen atom and by the amide anion cooperatively to the *peri* site on the distal ring rather than simply ortho to the amide. Thus, treatment of 1 with BuLi and then with DMF gave the aldehyde 21, while quenching with CO<sub>2</sub> gave the zwitterionic acid 22 which gave the ester 23 on treatment with  $MeOH/H_2SO_4$ . Heating the amide-ester 23 with  $H_2N(CH_2)_2NMe_2$  gave the bis 1,9-amide 38 (44%). When the lithiation of 1 was performed in the presence of N, N, N', N'-tetramethyl-1,2-ethanediamine (TMEDA) and the time was extended from 25 min to 2.75 h prior to quenching with DMF, side reactions occurred to give inter alia the tetracyclic isoindolone 70 (10%), which is a new ring system. The IR spectrum of 70 contained a hydroxyl band  $(3375 \text{ cm}^{-1})$  and a carbonyl absorption  $(1690 \text{ cm}^{-1})$  characteristic of a  $\gamma$ -lactam [20], while both the <sup>1</sup>H and <sup>13</sup>C NMR spectra were consistent with the proposed structure. Thus the <sup>1</sup>H NMR spectrum contained a singlet due to an hydroxymethine proton at 5.68 ppm, and two ortho-coupled doublets (7.03, 7.09 ppm) attributed to H(5) and H(4) respectively. Moreover, since rotation about the lactam

(65)

(64)

| Substrate       | Lithiation conditions<br>(reagent(s)/ ° C) | Time<br>(min)  | Electrophile                        | Product         | Yield<br>(%)    |
|-----------------|--------------------------------------------|----------------|-------------------------------------|-----------------|-----------------|
| 2               | BuLi/-23                                   | 20             | CO <sub>2</sub>                     | 15              | 59              |
|                 |                                            |                | -                                   | 76              | 2               |
| 2               | <sup>t</sup> BuLi/-78                      | 60             | CO <sub>2</sub>                     | 15              | 5               |
| 15              | BuLi/TMEDA/-78                             | 35             | $CO_2$                              | 16 <sup>a</sup> | 6               |
|                 |                                            |                | -                                   | 7 ª             | 17              |
|                 |                                            |                |                                     | 17 <sup>a</sup> | 4               |
| 15              | BuLi/-78                                   | 5              | CO <sub>2</sub>                     | 16              | 9               |
|                 | then $-23$                                 | 60             | -                                   | 18 <sup>a</sup> | 46              |
| 15              | BuLi / - 78                                | 30             | I <sub>2</sub>                      | 16,20           | 30              |
|                 | ·                                          |                | -                                   | 19              | 38              |
| 1               | BuLi / - 78                                | 25             | DMF                                 | 21              | 38              |
| 1               | BuLi/TMEDA/-78                             | 165            | DMF                                 | 21              | 29              |
|                 |                                            |                |                                     | 70              | 10              |
| 1               | BuLi/TMEDA/-78                             | 60             | DMF                                 | 71              | 16              |
|                 | ,                                          |                |                                     | 72              | 15              |
|                 |                                            |                |                                     | 21              | 15              |
| 1               | BuLi                                       | 30             | CO <sub>2</sub>                     | 22              | 61              |
| 1               | <b>BuLi/TMEDA</b>                          | 35             | PhNCO                               | 24              | 44              |
| 1               | BuLi                                       | 35             | Me <sub>3</sub> SiCl                | 25              | 40              |
|                 |                                            |                |                                     | 26              | 55              |
| 1               | $BuLi/-78 \rightarrow 20$                  | - <sup>b</sup> | Me <sub>3</sub> SiCl                | 25              | 14              |
|                 |                                            |                |                                     | 27              | 15              |
| 1               | LiTMP $^{c}/-78 \rightarrow 20$            | _ b            | Me <sub>3</sub> SiCl                | 27              | 60              |
| 1               | BuLi/TMEDA/-78                             | 15             | Me <sup>3</sup> SiCl                | 28              | 9               |
|                 |                                            |                |                                     | 27              | 11              |
| 1               | BuLi/TMEDA/-78 <sup>d</sup>                | 15             | <sup>t</sup> BuMe <sub>2</sub> SiCl | 29              | 54              |
| 29              | <sup>s</sup> BuLi/TMEDA/-78                | 75             | DMF                                 | 41              | 16              |
|                 |                                            |                |                                     | 30              | 31              |
| 29              | <sup>t</sup> BuLi/TMEDA/-78                | 60             | CO <sub>2</sub>                     | 31 <sup>e</sup> | 32              |
|                 |                                            |                |                                     | 42 °            | 21              |
| 32 <sup>f</sup> | BuLi / - 78                                | 7              | Me <sub>3</sub> SiCl                | 34              | 87 <sup>s</sup> |
| 32 <sup>f</sup> | BuLi/-78                                   | 7              | <sup>t</sup> BuMe <sub>2</sub> SiCl | 35 °            | 6               |
|                 |                                            |                | -                                   | 44 °            | 3               |
| 11              | BuLi/-78                                   | 25             | DMF                                 | 73              | 54              |
| 73              | BuLi/-78                                   | 30             | DMF                                 | 36              | 18              |
| 14              | BuLi / - 78                                | 180            | DMF                                 | 74              | 49              |

# Table 2 Reactions of lithiated dibenzodioxins with electrophiles

<sup>a</sup> After methylation of the crude material with MeOH/H<sub>2</sub>SO<sub>4</sub>. <sup>b</sup> Me<sub>3</sub>SiCl present before BuLi added [21]. <sup>c</sup> Lithium 2,2,6,6-tetramethylpiperidide. <sup>d</sup> One equivalent BuLi, then <sup>t</sup>BuMe<sub>2</sub>SiCl. <sup>e</sup> Inseparable mixture. <sup>f</sup> Inseparable mixture containing **32**, **2**, **33**, and **43** in the ratio 2.3:1:0.37:0.30. <sup>g</sup> Based on the proportion of 2-bromodibenzodioxin in the starting mixture.

CO-N bond is prohibited, separate signals were observed for each of the four methylene protons [cf. two signals due to the methylene groups (3.53 ppm, q,  $CH_2CONH$ ; and 2.58, t,  $CH_2NMe_2$ ) in the starting material (1)]. The methylene protons adjacent to the lactam nitrogen in (70) gave rise to a doublet of doublets of doublets at 3.24 ppm (J = 15.0, 11.0, 2.1 Hz) and to an apparent doublet of doublets at 4.27 ppm (J = 15.0, 3.3 Hz), reflecting not only geminal coupling but also coupling to each of the non-equivalent vicinal protons. The splitting patterns for the methylene protons adjacent to the NMe<sub>2</sub> group were not resolved as



69;  $R^1 = CO_2Me$ ,  $R^2 = R^3 = H$ ,  $R^4 = Me$ )



(70;  $R^1 = CH_2OH$ ,  $R^2 = H$ 71;  $R^1 = CHO$ ,  $R^2 = (CH=CH)(CH_2)_2Me$ 72;  $R^1 = CHO$ ,  $R^2 = H$ )

clearly, one proton giving rise to a five-line multiplet centred at 2.78 ppm  $(J_{obs} = 14.5 \text{ Hz})$ . The isoindolone **70** arises as a consequence of cyclization between the newly introduced aldehyde group at C(1) and the nitrogen anion of the carboxamide.

Similarly, treatment of the 2-carboxamide 11 with BuLi at -78 °C and then with excess DMF gave the isomeric isoindolone 73 (54%), also a new ring system. When the lithiation of 11 was carried out at 0 °C prior to the introduction of DMF the C-formyl,N-formyl compound 37 was obtained in addition to the isoindolone 73 (44%). At this temperature intermolecular quenching of the nitrogen anion with DMF is competitive with intramolecular cyclization of the monoanion. This was confirmed by carrying out the lithiation at 0 °C and then cooling the mixture to -78 °C before adding DMF; none of the bis formyl compound 37 was formed, although the yield of the isoindolone 73 decreased to 29%, reflecting the instability of the dianion at 0 °C. Further treatment of the isoindolone 73 with BuLi (2 equiv.) followed by excess DMF did not result in functionalization at C(9), but gave the carboxamide 36 (18%) via deprotonation of the hydroxyl group and ring opening to regenerate the aldehyde and the amide anion. Subsequent nucleophilic attack on the aldehyde by BuLi and protonation during workup would afford the hydroxypentyl side chain.

Treatment of the acid 13 with CDI in either DMF or THF followed by addition of  $H_2N(CH_2)_3NMe_2$  afforded the 2-carboxamide 14 (94%). Reaction of the latter compound with BuLi (2 equiv.) for 3 h followed by the addition of DMF (1 equiv.) gave the isoindolone 74 (49%), homologous with 73.

With a view to subsequent displacement of an aromatic silve substituent by a carbon electrophile, resulting overall in regiospecific functionalization, chlorotrialkylsilanes were also used as quenching agents. In the case of the dibenzodioxin-1-carboxamide 1 both the 2- and 9-silvlated derivatives 27 and 25 were obtained when deprotonation was performed with butylithium in the presence of chlorotrimethylsilane [21], whereas introduction of the electrophile in the usual manner following a period of metallation afforded only the 9-silvl isomer. These results suggest that C(2) is the site of kinetic deprotonation and that equilibration can occur to generate the thermodynamically more stable C(9) aryllithium. Reaction of 1 with the bulkier electrophile t-butylchlorodimethylsilane gave only the C(2) silvated dibenzodioxin 29. It is suggested that this compound is formed by initial silvlation at the amide nitrogen followed by a 1.4-anionic migration of silicon which traps the C(2) kinetic carbanion efficiently. Indeed, when the amide 1 was N-deprotonated with 1 equiv. of BuLi and 1 equiv. of <sup>1</sup>BuMe<sub>2</sub>SiCl was then added, followed by a second equiv. of BuLi and then excess DMF, no aldehyde-derived products were formed, silane 29 being the only product (59%). Hence the C(2) anion was not present contemporaneously with DMF, indicating that  $N \rightarrow C$ rearrangement of silicon had occurred prior to this. Although 1.4 N  $\rightarrow$  C silvl migration has not been reported, a 1.3 N  $\rightarrow$  C shift of SiMe<sub>2</sub> has been proposed [22], and 1,4 O  $\rightarrow$  C and C  $\rightarrow$  C rearrangements are known [23,24]. 1,2-Migration of <sup>t</sup>BuMe<sub>2</sub>Si from  $S \rightarrow C$  has also been reported [25]. Attempts to prepare the putative 'BuMe<sub>2</sub>Si-N intermediate in the present case by treatment of the amide 1 with <sup>t</sup>BuMe<sub>2</sub>SiCl/Et<sub>3</sub>N at room temperature returned only 1 after aqueous workup, while N-H deprotonation with NaH at room temperature prior to the addition of <sup>t</sup>BuMe<sub>2</sub>SiCl at  $-78^{\circ}$ C gave only the C(2)-silvlated derivative 29 in low vield.

In an alternative route to 2-substituted dibenzodioxins, the parent compound 2 was treated with NBS (1.5 equiv.) in DMF as solvent at room temperature. Although this afforded a mixture (2.30:1.0:0.37:0.30) of the 2-bromo derivative 32, starting material 2, and the 2,8- and 2,7-dibromides 33 and 43, metal-halogen exchange followed by addition of Me<sub>3</sub>SiCl, workup, and removal of volatile contaminants by sublimation at 70-80°/0.1 mmHg allowed the isolation of pure 2-trimethylsilyldibenzo[b,e][1,4]dioxin (34). Acyl-desilylation of 34 by treatment with CH<sub>3</sub>COCl/AlCl<sub>3</sub> gave 2-acetyldibenzodioxin (36%) and 2 (56%).

For all of the compounds reported in this work location of the substituent(s) followed from analyses of NMR spectra and was supported in some cases by derivatization. For example, for the 1-amide aldehyde **21** a doublet of doublets (6.95 ppm), a triplet (7.02 ppm) and a doublet of doublets (7.84 ppm) were observed for the protons of one ring [H(6), H(7) and H(8), respectively] in the <sup>1</sup>H NMR spectrum, ruling out the possibility that the formyl group was located at C(2). The <sup>13</sup>C NMR spectrum confirmed formyl substitution on the distal ring, since signals due to C(6)–C(9) (122.2, 127.1, 128.2 and 124.0 ppm) were shifted downfield compared with the corresponding signals in the starting material (116.5, 126.1, 124.8 and 116.3 ppm).

#### Experimental

For general experimental details see ref. 26. Solvent A for PLC was  $CH_2Cl_2/EtOH/Et_3N$ , 100:10:1.

# Dibenzo[b,e][1,4]dioxin (2)

A degassed suspension of 2-chlorophenol (9.24 mL, 90.8 mmol),  $K_2CO_3$  (6.90 g, 49.9 mmol), copper(I) chloride (0.45 g, 4.5 mmol), and tris[2-(2-methoxyethoxy) ethyl]amine [10] (1.45 mL, 4.5 mmol) in unpurified [27] diglyme (10 mL) was heated under reflux under N<sub>2</sub> with vigorous stirring for 19 h. The cooled mixture was filtered through Celite, and the residue was washed with hexanes. The combined filtrate and washings were diluted with  $CH_2Cl_2$  and washed with water. The solvents were removed, and the diglyme solution was adsorbed onto Celite and extracted (Soxhlet) with hot hexanes. The hexanes were removed to give an oil which was chromatographed on alumina (hexanes) to yield dibenzo[b,e][1,4]dioxin (1.43 g, 17%) as white crystals, m.p. 119–120 °C (lit. [9] m.p. 119 °C),  $\nu_{max}$ (KBr) 1490 (aryl C=C), 1290, 1280 (C–O), 740 cm<sup>-1</sup> (aromatic).  $\delta$ (O) 90.0 ppm,  $\Delta \nu_{h/2}$  80 Hz, O(5, 10). Correct <sup>1</sup>H NMR [28], <sup>13</sup>C NMR [28] and mass spectra [29]. The solid not extracted into hexanes at room temperature was recrystallized from aqueous EtOH to yield further dibenzodioxin (2.78 g, 33%).

### Tricarbonyl[ $(1,2,3,4,4a,10a,-\eta)$ -dibenzo[b,e][1,4]dioxin]chromium (49)

A degassed mixture of dibenzodioxin (0.30 g, 1.6 mmol) and hexacarbonylchromium (0.39 g, 1.7 mmol) in dibutyl ether (40 mL) and THF (3.3 mL) was heated under reflux under N<sub>2</sub> for 22 h [30]. The suspension was filtered through Celite, and the residue washed with Et<sub>2</sub>O. Solvents were removed, and the solid (0.40 g, 86%) chromatographed (Me<sub>2</sub>CO/hexanes, 1:2) to yield tricarbonyl [(1,2,3,4,4a,10a- $\eta$ )-dibenzo[*b*,*e*][1,4]dioxin]chromium (49) (0.30 g, 58%) as yellow crystals, m.p. 167.5–169.5° (dec.). Anal. Found: C, 55.7; H, 3.3. C<sub>15</sub>H<sub>8</sub>CrO<sub>5</sub> calc.: C, 56.3; H, 2.5%.  $\nu_{max}$  (CHCl<sub>3</sub>) 1975, 1900 (CO), 716 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 5.07 (dd, J = 3.0, 4.4 Hz, H(2,3)); 5.42 (dd, J = 2.9, 4.4 Hz, H(1,4)); 6.89 (dd,  $J_{obs} = 3.8, 3.5, 5.9$  Hz, H(7,8)); 7.02 (dd, J = 3.5, 6.1 Hz, H(6.9)) ppm. m/z (8%, M), 264 (10, M – 2CO), 236 (31, 264 – CO), 184 (24, M – Cr(CO)<sub>3</sub>), 128, (13, 184 – 2CO), 52 (100, Cr).

### (Cyclopentadienyl)(dichloroarene)iron(1 +) complexes

(a) From 1,2-dichloro-4-methylbenzene. Complexation of 1,2-dichloro-4-methylbenzene (2.68 mmol) as described for **46** [26] gave a solid (1.12 g, 36%) which was purified by Me<sub>2</sub>CO/Et<sub>2</sub>O precipitation to yield ( $\eta^{5}$ -2,4-cyclopentadien-1-yl)( $\eta^{6}$ -1,2-dichloro-4-methylbenzene)iron(1 + ) hexafluorophosphate(1 - ) (**47**) (0.86 g, 30%) as yellow crystals, m.p. 210-213 °C (dec.). Anal. Found: C, 33.9; H, 2.6. C<sub>12</sub>H<sub>11</sub>Cl<sub>2</sub>F<sub>6</sub>FeP calc.: C, 33.8; H, 2.6%.  $\nu_{max}$ (KBr) 1430, 1422 (aryl C=C), 820, 550 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) 2.60 (s, CH<sub>3</sub>), 5.35 (s, C<sub>5</sub>H<sub>5</sub>); 6.53 (br, d, J<sub>5,6</sub> = 6.1 Hz, H(5)); 7.00 (d, J<sub>5,6</sub> = 6.3 Hz, H(6)); 7.05 (s, H(3)) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) 19.8 (CH<sub>3</sub>); 82.3 (C<sub>5</sub>H<sub>5</sub>); 88.68 (C(5)); 88.74 (C(6)); 90.3 (C(3)); 105.0 (C(4)); 106.4 (C(1)); 107.6 (C(2)) ppm.

(b) From 1,2-dichloro-3-methylbenzene. Complexation of 1,2-dichloro-3-methylbenzene (7 mL, 53.4 mmol), as above in refluxing octane (20 mL, 135 ° C) for 5.5 h followed by workup and precipitation gave a solid (1.28 g, 28%); further product (0.18 g, 4%) was recovered by extraction of the mother liquor with  $CH_2Cl_2$ . The combined crude products were purified by  $Me_2CO/Et_2O$  precipitation to yield  $(\eta^{5}-2,4-cyclopentadien-1-yl)(\eta^{6}-1,2-dichloro-3-methylbenzene)iron(1 + ) hexafluorophosphate(1 - ) (48) (1.17 g, 25%) as a greenish-yellow crystalline solid, m.p.$ 

210–213 °C (dec.). Anal. Found: C, 33.5; H, 2.9.  $C_{12}H_{11}Cl_2F_6FeP$  calc.: C, 33.8; H, 2.6%.  $\nu_{max}$ (KBr) 1450, 1415 (aryl C=C), 830, 551 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) 2.77 (s, CH<sub>3</sub>); 5.29 (s, C<sub>5</sub>H<sub>5</sub>); 6.47 (t, J = 6.3 Hz, H(5)); 6.60 (d,  $J_{4,5} = 6.1$  Hz, H(4)); 6.94 (dd,  $J_{4,6} = 0.9$ ,  $J_{5,6}$  6.4 Hz, H(6)) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) 20.4 (CH<sub>3</sub>); 8.20 (C<sub>5</sub>H<sub>5</sub>); 87.2 (C(6)); 88.3 (C(5)); 89.2 (C(4)); 103.8 (C(3)); 107.6 (C(1)); 108.5 (C(2)) ppm.

#### 2,3-Dihydroxy-N-[2-(dimethylamino)ethyl]benzamide

A mixture of methyl 2,3-dihydroxybenzoate [31] (0.29 g, 1.72 mmol) and N,N-dimethyl-1,2-ethanediamine (1.0 mL, 9.11 mmol) was heated under reflux for 20 min. Excess of amine was removed to give an oil which was distilled to yield 2,3-dihydroxy-N-[2-(dimethylamino)ethyl]benzamide (0.38 g, 98%) as an unstable yellow oil, b.p. (Kugelrohr) 130–135 ° C/0.04 mmHg. Anal. Found: C, 58.6; H, 7.7; N 12.4; M<sup>+</sup> 224.1161. C<sub>11</sub>H<sub>16</sub>N<sub>2</sub>O<sub>3</sub> calc.: C, 58.9; H, 7.2; N, 12.5%; M<sup>+</sup> 224.1182.  $\nu_{max}$ (CHCl<sub>3</sub>) 3550 (OH), 3400 (NH), 3100 (OH), 1640 (CO), 1595 (aryl C=C), 1527 (amide II), 1457 (aryl C=C), 1255 (C–O), 730 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 2.32 (s, N(CH<sub>3</sub>)<sub>2</sub>; 2.62, apparent t, J = 5.7 Hz,  $CH_2$ N(CH<sub>3</sub>)<sub>2</sub>); 3.56 (apparent q, J = 5.0, 5.3, 4.9 Hz, CONHCH<sub>2</sub>); 6.59 (J = 8.0 Hz, H(5)); 6.91 (dd,  $J_{4,6} = 1.3$ ,  $J_{4,5} = 7.9$  Hz, H(4)); 6.96 (dd,  $J_{4,6} = 1.3$ ,  $J_{5,6} = 8.1$  Hz, H(6)); 7.52 (s, 3-OH; 8.50, s, 2-OH, NH) ppm.  $\delta$ (C) 36.6 (CONHCH<sub>2</sub>); 45.0 (N(CH<sub>3</sub>)<sub>2</sub>); 57.7 (CH<sub>2</sub>NMe<sub>2</sub>); 114.5 (C(1)); 118.5 (C(6)); 118.8 (C(5)); 146.2 (C(2)); 149.5 (C(3)); 170.3 (CONH) ppm. m/z 224 (34, M), 137 (17, M – NHCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 109 (7, 137 – CO), 81 (19, 109 – CO), 71 (70, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100 – CH<sub>2</sub>NMe<sub>2</sub>), 44 (17, NMe<sub>2</sub>).

Reactions of  $(\eta^{5}-2, 4-cyclopentadien-1-yl)(\eta^{6}-1, 2-dichlorobenzene)iron(1 +)$  hexa-fluorophosphate(1 -) (46)

(a) With 1,2-benzenediol. A suspension of the complex 46 (92 mg, 0.22 mmol), 1,2-benzenediol (24 mg, 0.22 mmol), and  $K_2CO_3$  [14] (55.5 mg, 0.40 mmol) in degassed DMF [32] (2 mL) was stirred vigorously at room temperature under N<sub>2</sub> in the dark for 1.75 h. The mixture was acidified with 10% HCl and a solution of ammonium hexafluorophosphate (72 mg, 0.44 mmol) in water (*ca* 1 mL) was added with stirring to dissolve a precipitated solid. Water (*ca* 9 mL) was added slowly to precipitate a solid which was purified by  $CH_2Cl_2/Et_2O$  precipitation to yield ( $\eta^5$ -2,4-cyclopentadien-1-yl)[1,2,3,4,4a,10a- $\eta$ )-dibenzo[*b*,*e*][1,4]dioxin]iron(1 + ) hexafluorophosphate(1 - ) (50) [14] (74 mg, 74%) as yellow crystals, m.p. 209–210 °C (dec.).  $\nu_{max}$ (KBr) 1520, 1490, 1470 (aryl C=C), 1295, 1285 (C–O), 820 (PF), 755 (aromatic), 550 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) 5.27 (s, C<sub>5</sub>H<sub>5</sub>); 6.31 (br s, H(2,3)); 6.54 (br s, H(1,4)); 7.17 (br s, H(7,8)); 7.23 (br s, H(6,9)) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) 76.6 (C(1,4)); 78.9 (C<sub>5</sub>H<sub>5</sub>); 85.0 (C(2,3)); 118.3 (C(6,9)), 119.0 (C(4a,10a)); 127.3 (C(7,8)); 139.6 (C(5a,9a)) ppm.

Repetition of the reaction in THF under reflux for 22 h gave dibenzo[b,e] [1,4]dioxin (2) (50%) and 2-(2-chlorophenoxy)phenol (36%) [33].

Irradiation of the complex 50 in  $CH_2Cl_2$  under N<sub>2</sub> at 300 nm in a Pyrex test tube [13] for 3.5 h and chromatography (PLC) ( $CH_2Cl_2$ /hexanes, 1:1) gave dibenzo[b,e][1,4] dioxin (2) (94%) (correct <sup>1</sup>H NMR spectrum).

(b) With 4-methyl-1,2-benzenediol. The complex 46 (0.50 g, 1.21 mmol) was reacted with 4-methyl-1,2-benzenediol (0.15 g, 1.21 mmol) and  $K_2CO_3$  (0.30 g, 2.19 mmol) in DMF (6 mL) as in (a). Workup after 4.5 h gave a solid (0.39 g, 69%)

which was purified by CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O precipitation to yield ( $\eta^{5}$ -2,4-cyclopentadien-1-yl)[(5a,6,7,8,9,9a, $\eta$ )-2-methyldibenzo[b,e][1,4]dioxin]iron(1 + ) hexafluorophosphate(1 - ) (**51**) as yellow crystals, m.p. 194–196 °C (dec.). Anal. Found: C, 46.5; H, 3.6. C<sub>18</sub>H<sub>15</sub>F<sub>6</sub>FeO<sub>2</sub>P calc.: C, 46.6; H, 3.3%.  $\nu_{max}$ (KBr) 1520, 1500, 1470 (aryl C=C), 1295, 1280 (C–O), 875, 860 (aromatic), 820 (PF), 755 (aromatic), 552 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) 2.34 (s, CH<sub>3</sub>); 5.26 (s, C<sub>5</sub>H<sub>5</sub>); 6.30 (apparent dd, J = 1.7, 4.2 Hz, H(7,8)); 6.53 (apparent dd, J = 3.5, 6.9 Hz, H(6,9)); 7.00 (s, H(1)); 7.05 (s, H(3,4)) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) 20.7 (CH<sub>3</sub>); 76.6, (C(6)\*); 76.7 (C(9)\*); 78.9 (C<sub>5</sub>H<sub>5</sub>); 84.85 (C(7)\*\*); 84.9 (C(8)\*\*); 117.9 (C(4)); 118.5 (C(1)); 118.9 (C(5a)\*); 119.1 (C(9a)\*); 127.6 (C(3)); 137.4 (C(2)); 137.5 (C(4a)); 139.2 (C(10a)) ppm.

Irradiation of 51 in acetonitrile through quartz at 254 nm for 4 h yielded 2-methyldibenzo[b,e][1,4]dioxin (3) (76%) as white crystals (correct <sup>1</sup>H NMR spectrum).

(c) With 3,4-dihydroxybenzaldehyde. The complex **46** (2.5 g, 6.06 mmol) was reacted with 3,4-dihydroxybenzaldehyde [34] (0.84 g, 6.06 mmol) and K<sub>2</sub>CO<sub>3</sub> (1.51 g, 10.96 mmol) in DMF as in (a). Workup after 4 h gave a yellow solid (2.18 g, 75%) which was purified by Me<sub>2</sub>CO/Et<sub>2</sub>O precipitation to yield ( $\eta^{6}$ -2,4-cyclopentadien-1-yl)[(5a,6,7,8,9,9a- $\eta$ )-dibenzo[b,e][1,4]dioxin-2-carboxaldehyde]iron(1 + ) hexafluorophosphate(1 - ) (**52**) as yellow crystals, m.p. 211-213 °C (dec.). Anal. Found: C, 44.9; H, 3.0. C<sub>18</sub>H<sub>13</sub>F<sub>6</sub>FeO<sub>3</sub>P calc.: C, 45.2; H, 2.7%.  $\nu_{max}$ (KBr) 1695 (CO), 1520, 1500, 1468 (aryl C=C), 1290, 1280 (C-O), 878 (aromatic), 830, 552 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>, 60 MHz) 5.38 (s, C<sub>5</sub>H<sub>5</sub>); 6.42 (m, H(7,8)); 6.58 (m H(6,9)); 7.38 (d, J<sub>3,4</sub> = 8.0 Hz, H(4)); 7.63 (d, J<sub>1,3</sub> = 2.0 Hz, H(1)); 7.83 (dd, J<sub>1,3</sub> = 2.0 Hz, J<sub>3,4</sub> = 8.0 Hz, H(3)); 10.03 (s, CHO)) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>, 15 MHz) 76.7 (C(6)\*); 76.8 (C(9)\*); 79.3 (C<sub>5</sub>H<sub>5</sub>); 85.2 (C(7)\*\*); 85.3 (C(8)\*\*); 118.1 (C(9a)\*); 118.3 (C(4)); 118.6 (C(5a)\*); 119.2 (C(1); 129.1 (C(3)); 135.7 (C(2)); 140.2 (C(10a)); 144.1 (C(4a)); 190.6 (CHO) ppm.

Irradiation of **52** in acetonitrile for 2.5 h yielded dibenzo[*b,e*][1,4]dioxin-2carboxaldehyde (**4**) (59%) as a cream solid, m.p. 93–96 ° C (lit. [35] m.p. 91–92 ° C, [36] 101–102 ° C).  $\nu_{max}$ (KBr) 1690 (CO), 1495 (aryl C=C), 1305 (C–O), 750 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 6.91 (m, H(6,9)); 6.97 (d,  $J_{3,4} = 8.2$  Hz, H(4)); 7.37 (d,  $J_{1,3} = 1.9$ Hz, H(1)); 7.45 (dd,  $J_{3,4} = 8.2$  Hz, H(3)); 9.82 (s, CHO) ppm.  $\delta$ (C) (15 MHz) 116.5 (C(4,6)); 116.8 (C(1)); 124.2 (C(7)\*); 124.7 (C(8)\*); 126.9 (C(3)); 132.8 (C(2)); 141.2 (C(9a)\*); 141.5 (C(5a)\*); 142.7 (C(10a)); 147.3 (C(4a)); 189.8 (CHO) ppm. m/z 212 (100%, M), 211(55, M – H), 183 (43, 211 – CO), 155 (10, 183 – CO), 127 (25, 155 – CO).

The aldehyde 4 was also formed (48%) by sublimation of the complex 52 at  $240 \degree C/0.06$  mmHg in a Kugelrohr oven [14].

(d) With 3,4-dihydroxybenzoic acid. The complex **46** (0.50 g, 1.21 mmol) was reacted with 3,4-dihydroxybenzoic acid [37] (0.24 g, 1.57 mmol) and K<sub>2</sub>CO<sub>3</sub> (0.60 g, 4.36 mmol) in DMF (10 mL) as in (a). Workup after 24.5 h gave a yellow solid (0.40 g, 81%) which was purified by Me<sub>2</sub>CO/Et<sub>2</sub>O precipitation to yield ( $\eta^{6}$ -2,4-cyclopentadien-1-yl)[5a,6,7,8,9,9a- $\eta$ )dibenzo[b,e][1,4]dioxin-2-carboxylic acid]iron(1 + ) hexafluorophosphate(1 - ) (**53**) as yellow crystals, m.p. 226-229 °C (dec.). Anal. Found: C, 44.1; H, 3.5. C<sub>18</sub>H<sub>13</sub>F<sub>6</sub>FeO<sub>4</sub>P calc.: C, 43.8; H, 2.7%.  $\nu_{max}$ (KBr) 3425-2575 (OH), 1680 (CO), 1472, 1452 (aryl C=C), 1280 (C-O), 830 (PF), 760 (aromatic), 550 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>SOCD<sub>3</sub>) 5.22 (s, C<sub>5</sub>H<sub>5</sub>); 6.22 (br, s, H(7,8)); 6.59 (br s, H(6,9)); 7.31 (d, J<sub>3,4</sub> = 4.2 Hz, H(4)); 7.61 (s, H(1)); 7.78 (d, J<sub>3,4</sub> = 4.9 Hz,

H(3)) ppm; CO<sub>2</sub>H not observed.  $\delta$ (C) (CD<sub>3</sub>SOCD<sub>3</sub>) 75.1 (C(9)\*); 75.2 (C(6)\*); 77.9 (C<sub>5</sub>H<sub>5</sub>); 83.9 (C(8)\*); 84.0 (C(7)\*); 116.6 (C(9a)\*\*); 117.0 (C(5a)\*\*); 117.5 (C(4)); 117.9 (C(1)); 127.3 (C(3)); 128.6 (C(2)); 138.1 (C(10a)); 141.7 (C(4a)); 165.6 (CO<sub>2</sub>H).

Oxidation of 52 in acetone at  $0^{\circ}$ C with Jones reagent gave 53 (100%) (correct IR and <sup>1</sup>H NMR spectra).

(e) With 3,4-dihydroxybenzenepropanoic acid. The complex **46** (25 mg, 0.06 mmol) was reacted with 3,4-dihydroxybenzenepropanoic acid (11 mg, 0.06 mmol) and  $K_2CO_3$  (20 mg, 0.14 mmol) in DMF (0.5 mL) as in (a). Workup after 28 h and trituration with Me<sub>2</sub>CO gave a yellow solid which was redissolved in Me<sub>2</sub>CO and precipitated with Et<sub>2</sub>O to yield ( $\eta^{5}$ -2,4-cyclopentadien-1-yl)[(5a,6,7,8,9,9a- $\eta$ )-dibenzo[b,e][1,4]dioxin-2-propanoic acid]iron(1 + ) hexafluorophosphate(1 - ) (**54**) (24 mg, 75%) as yellow crystals.  $\nu_{max}$ (KBr) 3425 (OH), 1695 (CO), 1493 (aryl C=C), 1290, 1280 (C-O), 835 (PF), 744 (aromatic), 550 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>, 60 MHz) 2.82-3.03 (m, CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H); 5.28 (s, C<sub>6</sub>H<sub>5</sub>); 6.30-6.52 (m, H(6-9); 7.13 (br s, H(1,3,4)) ppm; CO<sub>2</sub>H not observed.

Degassed acetonitrile (5 mL) was added to the complex **54** (47 mg), an insoluble white solid was filtered off, and the solution was irradiated at 300 nm in a Pyrex text tube under N<sub>2</sub> for 1.25 h. Removal of solvent and chromatography (PLC) (Et<sub>2</sub>O/hexanes, 1:1, 3:2) yielded dibenzo[*b*,*e*][1,4]dioxin-2-propanoic acid (5) [38] (7 mg, 45%) as a white solid, m.p. 157–165 °C Anal Found: M<sup>++</sup> 256.0725.  $C_{15}H_{12}O_4$  calc.: M<sup>++</sup> 256.0736.  $\nu_{max}$ (KBr) 3500–2550 (OH), 1690 (CO), 1510, 1490 (aryl C=C), 1290, 1280 (C–O), 745 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 2.65 (t, *J* = 7.5 Hz, *CH*<sub>2</sub>CO<sub>2</sub>H); 2.85 (t, *J* = 7.5 Hz, *CH*<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H); 6.71 (m, H(1), 0.5 H(3); 6.75, d, *J*<sub>1,3</sub> = 1.5 Hz, 0.5H(3)); 6.77 (d, *J* = 8.0 Hz, H(4)); 6.83 (m, H(7,8); 6.88, m, H(6,9)) ppm; CO<sub>2</sub>H not observed.  $\delta$ (C) 29.8 (*C*H<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H); 33.2 (*C*H<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H); 116.1 (C(4)); 116.26 (C(6)\*); 116.33 (C(9)\*, C(1); 123.4 (C(7)\*); 123.7 (C(8)\*); 123.8 (C(3)); 136.0 (C(2)); 140.6 (C(4a)); 141.7 (C(10a)); 142.0 (C(5a)\*\*); 142.1 C(9a)\*\*); 177.0 (CO<sub>2</sub>H) ppm. *m*/*z* 256 (41, M), 211 (3, M – HO–CO), 210 (5, M – H<sub>2</sub>O–CO), 197 (100, M – CH<sub>2</sub>CO<sub>2</sub>H), 169 (1, 197 – CO), 141 (4, 169 – CO).

(f) With methyl 2,3-dihydroxybenzoate. The complex 46 (0.10 g, 0.24 mmol) was reacted with methyl 2,3-dihydroxybenzoate (41 mg, 0.24 mmol) and  $K_2CO_3$  (60 mg, 0.44 mmol) in DMF (2 mL) as in (a). Workup after 1.5 h gave a yellow solid (0.11 g, 87%) which was purified by Me<sub>2</sub>CO/Et<sub>2</sub>O precipitation to yield ( $\eta^5$ -2,4-cyclopen-tadien-1-yl)[methyl (5a,6,7,8,9,9a- $\eta$ )-dibenzo[b,e][1,4]dioxin-1-carboxylate]-

iron(1 + ) hexafluorophosphate(1 – ) (57) as yellow crystals, m.p. 220–223 °C (dec.). Anal. Found: C, 44.9; H, 3.7.  $C_{19}H_{15}F_6FO_4P$  calc.: C, 44.9; H, 3.0%.  $\nu_{max}$ (KBr) 1715 (CO), 1527, 1457, 1435 (aryl C=C), 1305, 1280 (C–O), 825 (PF), 750 (aromatic), 555 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) 3.96 (s, OCH<sub>3</sub>); 5.31 (s,  $C_5H_5$ ); 6.36 (3 lines,  $J_{obs} = 3.7$ , 3.0 Hz, H(7,8)); 6.61 (dd,  $J_{6,8} = 2.8$ ,  $J_{6,7} = 4.0$  Hz, H(6)); 6.64 (dd,  $J_{7,9} = 2.8$ ,  $J_{8,9} = 6.8$  Hz, H(9)); 7.34 (t, J = 7.9 Hz, H(3)); 7.40 (dd,  $J_{2,4} = 1.4$ ,  $J_{3,4} = 8.1$  Hz, H(4)); 7.69 (dd,  $J_{2,4} = 1.4$ ,  $J_{2,3} = 7.7$  Hz, H(2)) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) 52.9 (OCH<sub>3</sub>); 76.7 (C(6))\*); 77.0 (C(9)\*); 79.2 (C<sub>5</sub>H<sub>5</sub>); 85.21 (C(7)\*); 85.24 (C(8)\*); 118.4 (C(5a)\*\*); 118.9 (C(9a)\*\*); 121.8 (C(1)); 122.2 (C(4)); 126.5 (C(3)); 128.8 (C(2)); 139.4 (C(4a)); 140.5 (C(10a)); 164.6 (CO<sub>2</sub>Me) ppm. m/z (DCI<sup>+</sup>) 363 (1,  $C_{19}H_{15}FeO_4$ ), 242 (100, 363 –  $C_5H_5Fe$ ), 211 (81, 242 – CH<sub>3</sub>O), 186 (30, ( $C_5H_5$ )<sub>2</sub>Fe), 155 (8, 211 – 2CO), 127 (24, 155 – CO), 121(15,  $C_5H_5Fe$ ).

Irradiation of 57 in acetonitrile for 2.5 h gave methyl dibenzo[b,e][1,4]dioxin-1-

carboxylate (7) (0.88 g, 87%) which sublimed (Kugelrohr) at 105–120 °C/0.04 mmHg to give a white solid, m.p. 92–94 °C (lit. [39] m.p. 88 °C, [144] 86 °C) Anal. Found: C, 69.6; H, 4.2.  $C_{14}H_{10}O_4$  calc.: C, 69.4; H, 4.2%.  $\nu_{max}$ (KBr) 1720 (CO), 1595, 1460 (aryl C=C), 1280, 1270, 1255 (C–O), 745 cm<sup>-1</sup> (aromatic). Correct <sup>1</sup>H NMR spectrum [30].  $\delta$ (C) 52.3 (OCH<sub>3</sub>); 116.1 (C(6)\*); 116.9 (C(9)\*); 119.3 (C(1)), 120.9 (C(4)); 122.8 (C(3)); 124.1 (C(7)\*); 124.4 (C(8)\*); 125.8 (C(2)); 141.6 (C(5a)\*\*); 141.8 (C(9a)\*\*); 142.6 (C(4a)); 142.9 (C(10a)); 165.2, (CO<sub>2</sub>Me) ppm. m/z 242 (100, M), 211 (76, M – CH<sub>3</sub>O), 183(33, 211 – CO), 155 (6, 183 – CO), 127 (17, 155 – CO).

(g) With 1,2,3-benzenetriol. The iron complex 46 (0.10 g, 0.24 mmol) was reacted with 1,2,3-benzenetriol (32 mg, 0.24 mmol and  $K_2CO_3$  (77 mg, 0.56 mmol) in DMF (2 mL) as in (a). Workup after 3 h and trituration with Me<sub>2</sub>CO followed by precipitation with Et<sub>2</sub>O and chromatography (CH<sub>2</sub>Cl<sub>2</sub>/EtOH, 9:1) yielded ( $\eta^5$ -2,4-cyclopentadien-1-yl)[5a,6,7,8,9,9a- $\eta$ )dibenzo[*b*,*e*][1,4]dioxin-1-ol]iron(1 + ) hexafluorophosphate(1 - ) (55) (0.11 g) as an unstable dark oil.  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>, 60 MHz) 5.25 (s, C<sub>5</sub>H<sub>5</sub>); 6.25-7.03 (m (H2-4,6-9)) ppm.

A degassed solution of the complex 55 (0.11 g) in acetonitrile (12 mL) was irradiated in a Pyrex test tube at 300 nm under N<sub>2</sub> for 4 h. Removal of solvent and chromatography (PLC) (Et<sub>2</sub>O/hexanes, 3:2) yielded (i) dibenzo[b,e][1,4]dioxin-1ol (6) [40] (12.5 mg, 26%) which crystallized from Me<sub>2</sub>CO as white needles, m.p. 167-172 °C. Anal. Found: M<sup>+-</sup> 200.0470. C<sub>12</sub>H<sub>8</sub>O<sub>3</sub> calc.: M<sup>+-</sup> 200.0473). v<sub>max</sub>(KBr) 3350 (OH), 1498, 1484 (aryl C=C), 1308, 1285, 1270, 1240 (C-O), 750 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 5.30 (s, OH); 6.44 (dd,  $J_{2,4} = 1.3$ ,  $J_{2,3} = 8.2$  Hz, H(2)); 6.60 (dd,  $J_{2,4} = 1.3$ ,  $J_{3,4} = 8.3$  Hz, H(4)); 6.79 (t, J = 8.2 Hz, H(3)); 6.91 (m, H(6-9)) ppm.  $\delta(C)$  102.7 (C(4)); 105.6 (C(2)); 110.9 (C(9)\*); 111.3 (C(6)\*); 117.9 (C(8)\*); 118.5 (C(7)\*); 118.9 (C(3)); 124.6 (C(10a)); 136.0 (C(9a)\*\*); 136.5 (C(5a)\*\*); 137.0 (C(1)); 138.7 (C(4a)). m/z 200 (100, M), 171 (25, M - CO-H), 144 (11, M - 2CO);and (ii) 2-(2-chlorophenoxy)-1,3-benzenediol or 3-(2-chlorophenoxy)-1,2-benzenediol or a mixture of both isomers as a yellow oil (11 mg, 19%). Anal. Found:  $M^{+-}$  238.0228, 236.0211.  $C_{12}H_9ClO_3$  calc.:  $M^{+-}$  238.0211, 236.0240).  $\delta(H)$ (CD<sub>3</sub>COCD<sub>3</sub>, 60 MHz) 5.10-7.48 (m) ppm. m/z 236 (90, M), 201 (36, M - Cl), 183 (100, M - HCl), 155 (18, 183 - CO).

(h) With 2,3-dihydroxy-N-[2-(dimethylamino)ethyl]benzamide. The complex 46 (0.22 g, 0.53 mmol) was reacted with 2,3-dihydroxy-N-[2-(dimethylamino)ethyl] benzamide (0.12 g, 0.53 mmol) in DMF as in (a). Workup after 6 h, using sufficient 10% HCl to neutralize but not acidify the mixture, gave a brown solid (30.5 mg). The mother liquor was extracted with CH<sub>2</sub>Cl<sub>2</sub>, and the extract was dried (MgSO<sub>4</sub>) and concentrated to give a dark oil (0.37 g) which was combined with the solid and chromatographed on alumina (CH<sub>2</sub>Cl<sub>2</sub>/EtOH, 50:1) to give (i) a mixture (<sup>1</sup>H HMR) (0.12 g) of the (dibenzodioxin-1-carboxamide)iron complex 58 and the dibenzodioxin-1-carboxamide 1 as a yellow-brown oil; and (ii) a yellow oil (52 mg) which was purified by Me<sub>2</sub>CO/Et<sub>2</sub>CO precipitation to yield ( $\eta^{5}$ -2,4-cyclopentadien-1-yl[5a,6,7,8,9,9a]-N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-1-carboxamide]iron(1 + ) hexafluorophosphate(1 - ) (58) (31.5 mg, 11%) as an unstable yellow solid.  $\nu_{max}$ (KBr) 3425 (NH), 1655 (CO), 1526 (amide II), 1455 (aryl C=C), 1280 (C-O), 825, 550 cm<sup>-1</sup> (PF).  $\delta$ (H) 2.39 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.62 (br, s,  $CH_2NMe_2$ ; 3.62 (br, s, CONHC $H_2$ ); 5.17 (s,  $C_5H_5$ ); 6.29 (3 lines,  $J_{obs} = 6.3, 8.5$ Hz, H(7,8); 6.39 (br s, H(6,9)); 7.25 (m, H(3,4)); 7.51 (s, NH); 7.81 (d,  $J_{2,3} = 6.5$  Hz,

H(2)) ppm.  $\delta$ (C) 37.5 (CONHCH<sub>2</sub>); 45.3 (N(CH<sub>3</sub>)<sub>2</sub>); 57.4 (CH<sub>2</sub>NMe<sub>2</sub>); 75.8 (C(9)\*); 76.0 (C(6)\*); 78.4 (C<sub>5</sub>H<sub>5</sub>); 84.4 (C(8)\*); 84.6 (C(7)\*); 116.9 (C(9a)\*\*); 117.8 (C(5a)\*\*); 120.2 (C(4)); 124.2 (C(1)); 126.5 (C(2)); 128.3 (C(3)); 136.6 (C(10a)); 138.7 (C(4a)); 162.6 (CONH) ppm.

A degassed solution of the mixture (0.12 g) in acetonitrile (16 mL) was irradiated with stirring in a quartz tube at 300 nm under N<sub>2</sub> for 2.25 h. Removal of solvent and chromatography on alumina (CH<sub>2</sub>Cl<sub>2</sub>/EtOH, 20:1) yielded *N*-[2-(dimethylamino)ethyl]dibenzo[*b*,*e*][1,4]-dioxin-1-carboxamide (1) [1] (50 mg, 32%) as a cream solid, m.p. 101–103 °C.  $\nu_{max}$ (KBr) 3380 (NH), 1650 (CO), 1520 (amide II), 1495, 1460 (aryl C=C), 1285, 1275 (C–O), 740 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 2.36 (s, NMe<sub>2</sub>); 2.59 (apparent t, *J* = 5.9 Hz, CH<sub>2</sub>NMe<sub>2</sub>); 3.59 (apparent q, *J* = 6.1, 4.7, 5.7 Hz, CONHCH<sub>2</sub>); 6.93 (m, H(3,4,6–9); 7.74 (dd, *J*<sub>2,4</sub> = 3.2, *J*<sub>2,3</sub> = 6.5 Hz, H(2)); 8.12 (s, NH) ppm.  $\delta$ (C) 37.3 (CONHCH<sub>2</sub>); 45.1 (N(CH<sub>3</sub>)<sub>2</sub>); 57.4 (CH<sub>2</sub>NMe<sub>2</sub>); 116.3 (C(9)\*); 116.5 (C(6)\*); 119.4 (C(4)); 121.8 (C(1)); 123.4 (C(2)); 124.0 (C(3)); 124.8 (C(8)\*); 126.1 (C(7)\*); 140.8 (C10a); 141.3 (C(4a)); 141.8 (C(9a)\*\*); 142.2 (C(5a)\*\*); 167.7 (CONH) ppm.  $\delta$ (O) 90.8 ( $\Delta \nu_{h/2}$  191 Hz, O(5)); 93.5 (sh, O(10)); 243.7 ( $\Delta \nu_{h/2}$  8862 Hz, CONH) ppm. *m*/*z* 298 ( $\leq$  1, M), 296 ( $\leq$  1, M – H<sub>2</sub>), 211 (8, M – NHCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 183 (6, 211 – CO), 155 (2, 183 – CO), 127 (6, 155 – CO), 71 (43, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>), 44 (8, NMe<sub>2</sub>).

Treatment of a mixture of the ester 7 (0.62 g, 2.53 mmol) and N,N-dimethyl-1,2-ethanediamine (3.1 mL, 28.2 mmol) under reflux for 6.5 h gave the carboxamide 1 (0.67 g, 89%).

(i) With 2,3-dihydroxybenzoic acid. The iron complex **46** (0.50 g, 1.21 mmol) was reacted with 2,3-dihydroxybenzoic acid (0.24 g, 1.57 mmol) and K<sub>2</sub>CO<sub>3</sub> (0.60 g, 4.36 mmol) in DMF (10 mL) as in (a). Workup after 23 h by extraction into CH<sub>2</sub>Cl<sub>2</sub>, washing the organic layer with dilute aqueous NaOH, acidification of the aqueous extract with 10% aqueous HCl, and extraction into EtOAc gave ( $\eta^{5}$ -2,4-cyclopentadienyl)[(5a,6,7,8,9,9a- $\eta$ )-dibenzodioxin-1-carboxylic acid]iron(1 + ) hexafluorophosphate(1 – ) (**56**) (0.30 g, 50%) as an unstable oil.  $\nu_{max}$ (film) 3600–2500 (OH), 1652 (CO), 1505, 1446 (aryl C=C), 1245 (C–O), 830 (PF), 766 (aromatic), 554 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>, 60 MHz) 5.28 (s, C<sub>5</sub>H<sub>5</sub>); 6.30 (m, H(6–9)); 6.83–7.35 (m, H(3,4)); 7.58–7.93 (m, H(2)) ppm.

(j) With 6,7-dihydroxycoumarin. The complex 46 (0.10 g, 0.24 mmol) was reacted with 6,7-dihydroxycoumarin (0.43 g, 0.24 mmol) and K<sub>2</sub>CO<sub>3</sub> (60 mg, 0.44 mmol) in DMF (2 mL) as in (a). Workup after 2 h gave a yellow solid (0.10 g, 81%) which was recrystallized from CH<sub>3</sub>NO<sub>2</sub>/Et<sub>2</sub>O using the isopiestic method at 4°C overnight to yield [(6a,7,8,9,10,10a- $\eta$ )-benzo[*b*][benzopyran-2-ono[7,6-*e*]][1,4] dioxin]( $\eta^{5}$ -2,4-cyclopentadien-1-yl) iron(1 + ) hexafluorophosphate(1 – ) (64) as yellow crystals, m.p. 257–261°C (dec.). Anal. Found: C, 46.4; H, 2.4. C<sub>20</sub>H<sub>13</sub>F<sub>6</sub>FeO<sub>4</sub>P calc.: C, 46.4; H, 2.5%.  $\nu_{max}$ (KBr) 1700 (CO), 1462 (aryl C=C), 1295 (C–O), 836 (aromatic), 825, 550 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>SOCD<sub>3</sub>) 5.22 (s, C<sub>5</sub>H<sub>5</sub>); 6.23 (br s, H(8,9)); 6.54 (br s H(3)); 6.61 (br s, H(7,10)); 7.39 (s, H(12)); 7.62 (s, H(5)); 8.05 (br s, H(4)) ppm.  $\delta$ (C) (CD<sub>3</sub>SOCD<sub>3</sub>) 75.1 (C(7)\*); 75.2 (C(10)\*); 77.8 (C<sub>5</sub>H<sub>5</sub>); 83.8 (C(8)\*); 84.0 (C(9)\*); 105.5 (C(12)); 115.6 (C(3)); 115.8 (C(5)); 116.0 (C(4a)); 116.2 (C(6a)\*\*); 117.0 (C(10a)\*\*); 134.9 (C(5a)); 140.8 (C(11a)); 143.1 (C(4)); 151.1 (C(12a)); 159.4 (C(2)) ppm.

The aqueous mother liquor was extracted with  $CH_2Cl_2$  and the extract was worked up to give a yellow crystalline solid tentatively assigned as ( $\eta^{5}$ -2,4-cyclo-

pentadien-1-yl)[(5a,6,7,8,9,9a- $\eta$ )-3-hydroxydibenzo[*b,e*][1,4]dioxin-2-propenoic acid] iron(1 + ) hexafluorophosphate(1 - ) (13 mg, 10%).  $\nu_{max}$ (KBr) 3425 (OH), 1642 (CO), 1257, 1133 (C-O), 835, 552 cm<sup>-1</sup> (PF).

Irradiation of the complex **64** in acetonitrile for 1.25 h yielded benzo[*b*]benzopyran-2-ono-[7,6-*e*][1,4]dioxin (**45**) (18%) as a cream solid, m.p. 230–270 °C(dec.). Anal. Found: M<sup>++</sup> 252.0410. C<sub>15</sub>H<sub>8</sub>O<sub>4</sub> calc.: M<sup>++</sup> 252.0423.  $\nu_{max}$ (KBr) 1725 (CO), 1565, 1498 (aryl C=C), 1300, 1250 cm<sup>-1</sup> (C-O). *m/z* (100, M), 224 (54, M – CO), 196 (2, 224 – CO), 168 (14, 196 – CO), 140 (3, 168 – CO), 139 (13, 140 – H).

(k) With 2,3-dihydroxypyridine. The complex **46** (0.10 g, 0.24 mmol) was reacted with 2,3-dihydroxypyridine (27 mg, 0.24 mmol) and  $K_2CO_3$  (60 mg, 0.44 mmol) in DMF (2 mL) as in (a). Workup after 2.5 h gave a solid (98 mg, 90%) which was purified by Me<sub>2</sub>CO/Et<sub>2</sub>O precipitation to yield [5a,6,7,8,9,9a- $\eta$ )-[1,4]benzodioxino[2,3,b]pyridine]( $\eta^{5}$ -2,4-cyclopentadien)-1-yl)iron(1 + ) hexafluorophosphate(1 - ) (**65**) [8] as a yellow-brown solid.  $\nu_{max}$ (KBr) 1445 (aryl C=C), 1280 (C-O), 825, 550 cm<sup>-1</sup> (PF). Correct <sup>1</sup>H NMR spectrum [8].  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>, 15 MHz) 76.9 (C(6))\*); 77.7 (C(9)\*); 79.8 (C<sub>5</sub>H<sub>5</sub>); 85.8 (C(7)\*); 85.9 (C(8)\*); 118.4 (C(5a)\*\*); 118.8 (C(9a)\*\*); 124.5 (C(3)); 127.5 (C(4)); 135.8 (C(4a)); 144.9 (C(2)); 146.5 (C(10a)) ppm.

# Reactions of $(\eta^{5}-2, 4-cyclopentadien-1-yl)(\eta^{6}-1, 2-dichloro-4-methylbenzene)iron(1 + ) hexafluorophosphate(1 - ) (47)$

(a) With 1,2-benzenediol. The complex 47 (0.10 g, 0.24 mmol) was reacted with 1,2-benzenediol (26 mg, 0.24 mmol) and  $K_2CO_3$  (58 mg, 0.42 mmol) in DMF (2 mL) as above. Workup after 2.75 h gave a solid which was purified by  $CH_2Cl_2/Et_2O$  precipitation to yield ( $\eta^5$ -2,4-cyclopentadien-1-yl)[(1,2,3,4,4a,10a- $\eta$ )-2-methyldibenzo[b,e]1,4]dioxin]iron(1 + ) hexafluorophosphate(1 - ) (**59**) (60 mg, 55%) as yellow crystals, m.p. 163-165 °C. Anal. Found: C, 46.8; H, 3.7.  $C_{18}H_{15}F_6FeO_2P$  calc.: C, 46.6; H, 3.3%.  $\nu_{max}(KBr)$  1520, 1480 (aryl C=C), 1290, 1270 (C-O), 850, 832 (aromatic), 817 (PF), 750 (aromatic), 546 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) 2.55 (s, CH<sub>3</sub>); 5.24 (s,  $C_5H_5$ ); 6.24 (br d,  $J_{3,4} = 6.0$  Hz, H(3)); 6.50 (d,  $J_{3,4} = 6.2$  Hz, H(4)); 6.55 (s, H(1)); 7.18 (br s, H(7,8)); 7.25 (3 lines,  $J_{obs} = 3.4, 5.4$  Hz, H(6.9)) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) 19.8 (CH<sub>3</sub>); 75.7 (C(4)); 77.3 (C(1)); 79.4 (C<sub>5</sub>H<sub>5</sub>); 84.9 (C(3)); 101.1 (C(2)); 117.9 (C(4a)); 118.31 (C(6)\*); 118.34 (C(9)\*); 118.4 (C(10a); 127.3 (C(7,8)); 139.7 (C(5a)\*); 139.7 (C(9a)\*) ppm.

Irradiation of **59** in CH<sub>2</sub>Cl<sub>2</sub> as above for 1.5 h and chromatography (PLC) (CH<sub>2</sub>Cl<sub>2</sub>/hexanes, 1:8) yielded 2-methyldibenzo[*b*,*e*][1,4]dioxin (**8**) (21 mg, 69%) as white crystals, m.p. 54.5–55.5 °C (lit. [41] m.p. 54 °C).  $\nu_{max}$ (KBr) 1497 (aryl C=C), 1285 (C–O), 740 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 2.23 (s, CH<sub>3</sub>); 6.55 (m, H(1), 0.5H(3)); 6.67 (d,  $J_{1,3} = 1.3$  Hz, 0.5H(3)); 6.72 (d,  $J_{3,4} = 7.9$  Hz, H(4)); 6.84 (m, H(6–9)) ppm.  $\delta$ (C) 20.7 (CH<sub>3</sub>); 115.9 (C(4)); 116.30 (C(6)\*); 116.34 (C(9)\*); 116.8 (C(1); 123.6 (C(7)\*); 123.7 (C(8)\*); 124.0 (C(3)); 133.6 (C(2)); 139.8 (C(4a)); 141.7 (C(10a)); 142.2 (C(5a)\*\*); 142.3 (C(9a)\*\*) ppm. *m*/*z* 198 (100, M), 196 (33 (M – H<sub>2</sub>), 169 (14, M – H–CO), 141 (12, 169 – CO).

(b) With 4-methyl-1,2-benzenediol. The complex 47 (0.20 g, 0.46 mmol) was reacted with 4-methyl-1,2-benzenediol (58 mg, 0.46 mmol) and  $K_2CO_3$  (0.12 g, 0.84 mmol) in DMF (4 mL) as above. Workup after 1.75 h and precipitation from  $CH_2Cl_2/Et_2O$  yielded a mixture (1.2:1) (<sup>1</sup>H NMR) of ( $\eta^5$ -2,4-cyclopentadien-1-yl)[(1,2,3,4,4a,10,- $\eta$ )-2,7-dimethyldibenzo[b,e][1,4]dioxin]iron(1 + ) hexafluorophos-

phate(1 – ) (**66**) and ( $\eta^{5}$ -2,4-cyclopentadien-1-yl)[(1,2,3,4,4a,10a- $\eta$ )-2,8-dimethyldibenzo[*b*,*e*][1,4]dioxin]iron(1 + ) hexafluorophosphate(1 – ) (**60**), as yellow crystals (0.12 g, 52%), m.p. 171–173 °C. Anal. Found: C, 47.1; H, 3.5. C<sub>19</sub>H<sub>17</sub>O<sub>2</sub>F<sub>5</sub>FeP calc.: C, 47.7; H, 3.6%.  $\nu_{max}$ (KBr) 1500, 1480 (aryl C=C), 1300, 1280 (C=O), 830 (PF), 824 (aromatic), 550 cm<sup>-1</sup> (PF).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) (**66**) 2.31 (s, 7-CH<sub>3</sub>); 2.52 (s, 2-CH<sub>3</sub>); 5.19 (s, C<sub>5</sub>H<sub>5</sub>); 6.19 (d, J<sub>3,4</sub> = 6.2 Hz, H(3)); 6.45 (d, J<sub>3,4</sub> = 6.4 Hz, H(4)); 6.51 (s, H(1)); 6.98 (s, H(6)); 7.03 (s, H(8,9). (**60**) 2.31 (s, 8-CH<sub>3</sub>); 2.52 (s, 2-CH<sub>3</sub>); 5.19 (s, C<sub>5</sub>H<sub>5</sub>); 6.19 (d, J<sub>3,4</sub> = 6.2 Hz, H(3)); 6.46 (d, J<sub>3,4</sub> = 6.5 Hz, H(4)); 6.50 (s, H(1)); 6.96 (s, H(9)); 7.03 (s, H(6,7)).  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) (**66**) 19.7 (2-CH<sub>3</sub>); 20.7 (7-CH<sub>3</sub>); 75.6 (C(4)); 77.2 (C(1)); 79.2 (C<sub>5</sub>H<sub>5</sub>); 84.8 (C(3)); 100.9 (C(2)); 117.8 (C(9)); 118.0 (C(4a)); 118.3 (C(10a)); 118.5 (C(6)); 127.5 (C(8)); 137.4 (C(7,9)); 139.2 (C(5a). (**60**) 19.7 (2-CH<sub>3</sub>); 20.7 (8-CH<sub>3</sub>); 75.7 (C(4)); 77.3 (C(1)); 79.9 (C<sub>5</sub>H<sub>5</sub>); 84.7 (C(3)); 101.0 (C(2)); 117.8 (C(4a)); 117.9 (C(6)); 118.4 (C(9)); 118.6 (C(10a)); 127.5 (C(7)); 137.4 (C(5a.8)); 139.2 (C(9a)) ppm.

In a further experiment carried out for 3 days the products were (i) a mixture (18%) of **66** and **60**, and (ii) from PLC (Et<sub>2</sub>O/hexanes, 1:3) of the mother liquors a mixture (1.2:1) (<sup>1</sup>H NMR) (25 mg, 25%) of 2,7-dimethyldibenzo[*b*,*e*][1,4]dioxin (**39**) and 2,8-dimethyldibenzo[*b*,*e*][1,4]dioxin (**9**) which crystallized from EtOH as needles, m.p. 83–85 ° C.  $\nu_{max}$ (KBr) 1500 (aryl C=C), 1302, 1226, 1218, 1204 (C–O), 801 cm<sup>-1</sup> (aromatic).  $\delta$ (H) (**39**) 2.24 (s, 2xCH<sub>3</sub>); 6.65 (m, H[1,6,0.5H(3),0.5H(8)]; 6.67 (m, 0.5H(3,8)); 6.72 (d, *J* = 8.0 Hz, H(4,9)). (**9**) 2.24 (s, 2xCH<sub>3</sub>); 6.65 (m, H[1,9,0.5(H)3]); 6.67 (m, 0.5H(3,7)); 6.71 (d, *J* = 8.2 Hz, H(4.6)) ppm.  $\delta$ (C) (**39**) 20.7 (2xCH<sub>3</sub>); 115.9 (C(4,9)); 116.8 (C(1,6)); 123.8 (C(3,8)); 133.5 (C(2,7)); 139.8 (C(4a,9a)); 141.8 (C(5a, 10a)). (**9**) 20.7 (2xCH<sub>3</sub>); 115.9 (C(4,6)); 116.8 (C(1,9)); 124.0 (C(3,7)); 133.4 (C(2,8)); 140.0 (C(4a,5a)); 141.7 (C(9a,10a)) ppm. *m/z* 212 (100, M), 211 (28, M – H), 197 (4, M – CH<sub>3</sub>), 183 (13, 211 – CO), 169 (9, 197 – CO), 155 (3, 183 – CO), 141 (5, 169 – CO).

An authentic sample of **39**, m.p. 109–112 °C (lit. [19] 113 °C) was prepared by the method of Ramsden [19].

Irradiation of the mixture of 66 and 60 in acetonitrile for 3 h gave (83%) a mixture (1.3:1) of 39 and 9. Sublimation (Kugelrohr) of 66 and 60 at  $185 \degree C/0.02$  mmHg for 30 min gave (71%) a mixture 39 and 9.

(c) With 3.4-dihvdroxvbenzaldehvde. The complex 47 (94 mg, 0.22 mmol) was reacted with 3.4-dihydroxybenzaldehyde (30.5 mg, 0.22 mmol) and K<sub>2</sub>CO<sub>3</sub> (55 mg, 0.40 mmol) in DMF (2 mL) as above. Workup after 3 h gave a yellow solid (88 mg, 81%) which was purified by precipitation from Me<sub>2</sub>CO/Et<sub>2</sub>O to yield a mixture (1.6:1) (<sup>13</sup>C NMR) of ( $n^{5}$ -2.4-cvclopentadien-1-vl)((5a, 6, 7, 8, 9, 9a - n)-8-methyldibenzo[b,e][1,4]dioxin-2-carboxaldehyde]iron(1 + ) hexafluorophosphate(1 - ) (61) and  $(n^{5}-2.4-\text{cyclopentadien}-1-y)$  (5a.6.7.8.9.9a-n)-7-methyldibenzo (b,e) (1.4) dioxin-2carboxaldehyde]iron(1 + ) hexafluorophosphate(1 - ) (67) as yellow crystals (80 mg, 74%), m.p. 214-216 °C. Anal. Found: C, 46.5; H, 2.9. C<sub>19</sub>H<sub>15</sub>F<sub>6</sub>FeO<sub>3</sub>P calc.: C, 46.4; H, 3.1%. v<sub>max</sub>(KBr) 1690 (CO), 1604, 1519, 1500, 1480 (aryl C=C), 1290 (C-O), 870 (aromatic), 825 (PF), 774 (aromatic), 552 cm<sup>-1</sup> (PF). δ(H) (CD<sub>3</sub>COCD<sub>3</sub>) (61) 2.54 (s, CH<sub>3</sub>); 5.27 (s, C<sub>5</sub>H<sub>5</sub>); 6.25 (br d,  $J_{67}$  = 6.2 Hz, H(7)); 6.54 (d,  $J_{67}$  = 6.4 Hz, H(6)); 6.59 (s, H(9)); 7.36 (d,  $J_{3,4} = 8.2$  Hz, H(4)); 7.62 (s, H(1)); 7.80 (d,  $J_{3,4} = 8.1$  Hz, H(3)); 9.00 (s, CHO). (67) 2.54 (s, CH<sub>3</sub>); 5.27 (s, C<sub>5</sub>H<sub>5</sub>); 6.25 (br d,  $J_{8,9}^{(1)} = 6.2$  Hz, H(8)); 6.54 (d,  $J_{7,8} = 6.4$  Hz, H(9)); 6.59 (s, H(6)); 7.37 (d,  $J_{3,4} = 8.2$ Hz H(4)); 7.62 (s, H(1)); 7.80 (d,  $J_{3,4} = 8.2$  Hz, H(4)); 7.62 (s, H(1)); 7.80 (d,

 $J_{3,4} = 8.1$  Hz, H(3)); 9.00 (s, CHO) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) (**61**) 19.7 (CH<sub>3</sub>); 75.7 (C(6)); 77.2 (C(9)); 79.6 (C<sub>5</sub>H<sub>5</sub>); 85.1 (C(7)); 101.5 (C(8)); 117.1 (C(5a)); 118.1 (C(9a)); 118.3 (C(4)); 119.2 (C(1)); 129.1 (C(3)); 135.7 (C(2)); 140.2 (C(10a)); 144.1 (C(4a)); 190.8 (CHO). (**67**) 19.7 (CH<sub>3</sub>); 75.6 (C(9)); 77.2 (C(6)); 79.6 (C<sub>5</sub>H<sub>5</sub>); 85.2 (C(8)); 101.4 (C(7)); 117.5 (C(9a)); 117.6 (C(5a)); 118.3 (C(4)); 119.2 (C(1)); 129.1 (C(3)); 135.7 (C(2)); 140.3 (C(10a)); 129.1 (C(3)); 135.7 (C(2)); 140.3 (C(10a)); 144.1 ((4a)); 190.8 (CHO) ppm.

Irradiation of 61 and 67 in acetonitrile for 3 h gave a mixture (1.8:1) of 8-methyldibenzo[b, e][1,4]dioxin-2-carboxaldehyde (10) and 7-methyldibenzo[b,e][1,4]dioxin-2-carboxaldehyde (40) as white crystals, m.p. 97-99 °C. Anal. Found: C, 73.9; H, 4.6; M<sup>+-</sup> 226.0623. C<sub>14</sub>H<sub>10</sub>O<sub>3</sub> calc.: C, 74.3; H, 4.5%; M<sup>+-</sup> 226.0630).  $\nu_{\text{max}}$ (KBr) 1688 (CO), 1502 (aryl C=C), 1298 (C-O), 806 cm<sup>-1</sup> (aromatic).  $\delta$ (H) (10) 2.26 (s, CH<sub>3</sub>); 6.70 (d,  $J_{7,9} = 1.6$  Hz, H(9)); 6.73 (dd,  $J_{obs} = 1.9$ , 1.6,  $J_{6.7} = 7.5$  Hz, H(7)); 6.76 (d,  $J_{6.7} = 8.0$  Hz, H(6)); 6.95 (d,  $J_{3,4} = 8.2$  Hz, H(4)); 7.35 (d,  $J_{1,3} = 2.1$  Hz, H(1)); 7.4 (dd,  $J_{13} = 1.8$ ,  $J_{3,4} = 8.2$  Hz, H(3)); 9.81 (s, CHO). (40) 2.26 (s, CH<sub>3</sub>); 6.70 (d,  $J_{6.8} = 1.6$  Hz, H(6)); 6.73 (dd,  $J_{obs} = 1.9$ , 1.6,  $J_{8.9} = 7.5$  Hz H(8)); 6.77 (d,  $J_{8,9} = 8.2$  Hz, H(9)); 6.95 (d,  $J_{3,4} = 8.2$  Hz, H(4)); 7.35 (d,  $J_{1,3} = 2.3$ Hz, H(1)); 7.44 (dd,  $J_{1,3} = 1.3$ ,  $J_{3,4} = 8.2$  Hz, H(3)); 9.81 (s, CHO) ppm.  $\delta$ (C) (15 MHz) (10) 20.7 (CH<sub>3</sub>); 116.1 (C(6)); 116.5 (C(4)); 116.7 (C(9)); 116.9 (C(1)); 124.4 (C(7)); 126.9 (C(3)); 132.6 (C(2)); 134.6 (C(8)); 138.9 (C(5a)); 141.0 (C(9a)); 142.7 (C(10a)); 148.5 (C(4a)); 189.9 (CHO). (40) 20.7  $(CH_3);$  116.1 (C(9)); 116.5 (C(4));116.7 (C(6)); 116.9 C(1)); 124.9 (C(8)); 126.8 (C(3)); 132.7 (C(2)); 134.1 (C7)); 139.1 (C(9a)); 140.7 (C(5a)); 142.9 (C(10a)); 147.3 (C(4a)); 189.9 (CHO) ppm. m/z (100, 100)); 147.3 (C(4a)); 147.3 (C(4a)); 147.3 (C(4a)); 147.3 (C(4a))); 147.3 (C(4a)); 147.3 (C(4a)); 147.3 (C(4a))); 147.3 (C(4a))); 147.3 (C(4a)); 147.3 (C(4a)); 147.3 (C(4a))); 147.3 (C(4a)); 147.3 (C(4a))); 147.3 (C(4a)); 147.3 (C(4a))); 147.3 (C(4a)); 147.3 (C(4aM), 225 (60, M – H), 197 (50, 225 – CO), 169 (10, 197 – CO), 141 (10, 169 – CO).

Reactions of  $(\eta^{5}-2,4-cyclopentadien-1-yl)(\eta^{6}-1,2-dichloro-3-methylbenzene)iron(1 + )$ hexafluorophosphate(1 - ) (48)

(a) With 1,2-benzenediol. The complex **48** (0.10 g, 0.23 mmol) was reacted with 1,2-benzenediol (26 mg, 0.23 mmol) and K<sub>2</sub>CO<sub>3</sub> (48 mg, 0.42 mmol) in DMF (2 mL) as above. Workup after 22 h and chromatography on alumina (CH<sub>2</sub>Cl<sub>2</sub>/EtOH, 10:1) gave a yellow oil (64.5 mg). Further chromatography (PLC) (solvent A) yielded ( $\eta^{5}$ -2,4-cyclopentadien-1-yl)[(1,2,3,4,4a,10a- $\eta$ )-1-methyldibenzo[b,e][1,4]-dioxin]iron(1 + ) hexafluorophosphate(1 - ) (**68**) (14 mg, 13%) which crystallized from Me<sub>2</sub>CO/Et<sub>2</sub>O (isopiestic method, 4°C) as yellow needles, m.p. 159.5–160.5°C. Anal. Found: C, 46.6; H, 3.1. C<sub>18</sub>H<sub>15</sub>F<sub>6</sub>FeO<sub>2</sub>P calc.: C, 46.6; H, 3.3%.  $\nu_{max}$ (film) 1490, 1465 (aryl C=C), 1295, 1275 (C–O), 820 (PF), 745 cm<sup>-1</sup> (aromatic).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) 2.62 (s, CH<sub>3</sub>); 5.22 (s, C<sub>5</sub>H<sub>5</sub>); 6.26 (t, J = 6.2 Hz, H(3)); 6.33 (d,  $J_{2,3}$  = 6.0 Hz, H(2)); 6.48 (dd,  $J_{2,4}$  1.0,  $J_{3,4}$  = 6.3 Hz, H(4)); 7.16 (m, H(7,8)); 7.25 (dd,  $J_{obs}$  = 3.5, 3.7, 4.8 Hz, H(6,9)) ppm.  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) 15.1 (CH<sub>3</sub>); 54.4 (C(4)); 79.1 (C<sub>5</sub>H<sub>5</sub>); 83.5 (C(3)); 86.2 (C(2)); 92.4 (C(1)); 117.8 (C(4a)); 118.2 (C(6)\*); 118.4 (C(9)\*), 118.5 (C(10a)); 127.5 (C(7)\*); 127.3 (C(8)\*); 139.7 (C(5a)\*\*), 139.9 (C(9a)\*\*).

(b) With methyl 2,3-dihydroxybenzoate. The complex **48** (0.11 g, 0.26 mmol) was reacted with methyl 2,3-dihydroxybenzoate (43 mg, 0.26 mmol) and K<sub>2</sub>CO<sub>3</sub> (64 mg, 0.47 mmol) in DMF (2.2 mL) as above. Workup after 23 h and chromatography on alumina (CH<sub>2</sub>Cl<sub>2</sub>/EtOH, 10:1) gave a yellow oil (99 mg). Further chromatography (PLC) (solvent A) gave a mixture (1.9:1) (<sup>1</sup>H NMR) of ( $\eta^{5}$ -2,4-cyclopentadien-1-yl)[methyl (5a,6,7,8,9,9a- $\eta$ )-9-methyldibenzo[b,e][1,4]dioxin-1-carboxylate]iron-(1 + )hexafluorophosphate(1 - ) (**62**) and ( $\eta^{5}$ -2,4-cyclopentadien-1-yl)[methyl-

 $(5a,6,7,8,9,9a-\eta)$ -6-methyldibenzo[b,e][1,4]dioxin-1-carboxylate]iron(1 + ) hexafluorophosphate(1 - ) (**69**) as a yellow solid (33.5 mg, 25%).  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>) (**62**) 2.65 (s, CH<sub>3</sub>); 3.99 (s, OCH<sub>3</sub>); 5.21 (s, C<sub>5</sub>H<sub>5</sub>); 6.24 (t, J = 6.2 Hz, H(7)); 6.33 (d,  $J_{7,8} = 6.1$  Hz, H(8)); 6.49 (d,  $J_{6,7} = 6.4$  Hz, H(6)); 6.35 (t, J = 7.9 Hz, H(3)); 7.40 (dd,  $J_{2,4} = 1.7, J_{3,4} = 8.1$  Hz, H(4)); 7.74 (dd,  $J_{2,4} = 1.7, J_{2,3} = 7.7$  Hz, H(2)). (**69**) 2.27 (s, CH<sub>3</sub>); 3.91 (s, OCH<sub>3</sub>); 5.14 (s, C<sub>5</sub>H<sub>5</sub>); 6.24 (t, J = 6.2 Hz, H(8)); 6.33 (d,  $J_{7,8} = 6.1$ Hz, H(9)); 7.03 (t, J = 7.9 Hz, H(3)); 7.10 (dd,  $J_{2,4} = 1.8, J_{3,4} = 8.0$  Hz, H(4)); 7.44 (dd,  $J_{2,4} = 1.7, J_{2,3} = 7.8$  Hz, H(2)) ppm.

Recrystallization from Me<sub>2</sub>CO/Et<sub>2</sub>O (isopiestic method, 4°C) yielded **62** (7 mg, 5%) as yellow needles, m.p. 232.5–234.5°C (dec.). Anal. Found: C, 46.0; H, 3.6.  $C_{20}H_{17}F_6FeO_4P$  calc.: C, 46.0; H, 3.3%.  $\nu_{max}$ (KBr) 1710 (CO), 1460 (aryl C=C), 1275 (C–O), 820, 552 cm<sup>-1</sup> (PF).  $\delta$ (C) (CD<sub>3</sub>COCD<sub>3</sub>) 15.0 (CH<sub>3</sub>); 52.9 (OCH<sub>3</sub>); 75.4 (C(6)); 79.3 (C<sub>5</sub>H<sub>5</sub>); 83.7 (C(7)); 86.3 (C(8)); 93.0 (C(9)); 117.3 (C(5a)); 118.5 (C(9a)); 121.5 (C(1)); 122.2 (C(4)); 126.4 (C(3)); 128.9 (C(2)); 139.8 (C(4a)); 140.6 (C(10a)); 164.7 (CO<sub>2</sub>CH<sub>3</sub>) ppm.

Amidation of  $(\eta^{5}-2,4$ -cyclopentadien-1-yl)](5a,6,7,8,9,9a- $\eta$ )-dibenzo[b,e][1,4]dioxin-2-carboxylic acid]iron(1 + ) hexafluorophosphate(1 - ) (53)

1,1'-Carbonyldiimidazole (16 mg, 0.10 mmol) was added to a solution of the complex 53 (50 mg, 0.10 mmol) in DMF (0.3 mL) with swirling, causing effervescence and precipitation of a white solid. After 5 min N,N-dimethyl-1,2-ethanediamine (12  $\mu$ L, 0.11 mmol) was added, the mixture was left for 1.75 h, and solvent was removed. Chromatography of the resulting oil on alumina  $(CH_2Cl_2/EtOH,$ 10:1) yielded (i) N-2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-2-carboxamide (11) (5 mg, 17%) which crystallized from hexanes as white crystals, m.p. 117.5-118.5°C. Anal. Found: C, 68.2; H, 6.0; N, 9.7. C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O<sub>3</sub> calc.: C, 68.4; H, 6.1; H, 9.4%. v<sub>max</sub>(KBr) 3200 (NH), 1645 (CO), 1550 (amide II), 1500, 1490 (aryl C=C), 1300, 1285 (C–O), 730 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 2.33 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.58 (apparent t, J = 5.7, 5.9 Hz,  $CH_2NMe_2$ ); 3.53 (apparent q, J = 5.4, 5.7, 5.3 Hz,  $CONHCH_2$ ); 6.88 (m, H(4,6-9)); 7.02 (s, NH); 7.33 (d,  $J_{1,3} = 2.0$  Hz, H(1)); 7.38 (dd,  $J_{1,3} = 2.0$ ,  $J_{3,4} = 8.3$  Hz, H(3)) ppm.  $\delta$ (C) 36.9 (CONHCH<sub>2</sub>); 45.0 (N(CH<sub>3</sub>)<sub>2</sub>); 57.8 (CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>); 115.5 (C(1)); 116.2 (C(4)); 116.45 (C(9)\*); 116.47 (C(6)\*); 123.0  $(C(3)); 124.1 (C(8)^{*}); 124.3 (C(7)^{*}); 130.2 (C(2)); 141.6 (C(10a)); 141.7 (C(9a)^{**});$ 142.0 (C(5a)\*\*); 144.7 C(4a)); 166.1 (CONH) ppm. m/z (<1, M), 296 (<1,  $M - H_2$ ), 254 (<1,  $M - NMe_2$ ), 228 (9,  $M - CH=CHNMe_2$ ), 211 (9, M -NHCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 183 (6, 211 - CO),155 (1,183 - CO), 71 (34, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>), 44 (5, NMe<sub>2</sub>); and (ii)  $(\eta^{5}-2,4-cyclopentadien-1-yl)[(5a,6,7,8,$  $9,9a-\eta$ )-N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-2-carboxamide]iron(1 + ) hexafluorophosphate(1 – ) (63) (15 mg, 27%) as a yellow unstable solid.  $\nu_{max}$ (KBr) 3430 (NH), 1644 (CO), 1533 (amide II), 1490, 1462 (aryl C=C), 1282 (C-O), 836 (PF), 755 (aromatic), 550 cm<sup>-1</sup>.  $\delta$ (H) (CD<sub>3</sub>COCD<sub>3</sub>, 60 MHz) 2.26 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.50 (m,  $CH_2NMe_2$ ); 3.50 (m,  $CONHCH_2$ ); 5.33 (s,  $C_5H_5$ ); 6.33-7.90 (m, H(1,3,4,6-9) ppm; NH not observed.

### Dibenzo[b,e][1,4]dioxin-1-carboxylic acid (15)

A suspension of the ester 7 (0.10 g, 0.41 mmol) in 20% aqueous NaOH (2 mL) was heated under reflux with stirring for 3 h, and worked up to give a solid which crystallized from aqueous EtOH to yield dibenzo[b,e][1,4]dioxin-1-carboxylic acid

(15) (56 mg, 60%) as white needles, m.p.  $212-215 \degree C$  (lit. [1] m.p.  $207 \degree C$ , [39]  $210 \degree C$ ).  $\nu_{max}$ (KBr) 3600–2100 (OH), 1682 (CO), 1495, 1455 (aryl C=C), 1270 (C–O), 737 cm<sup>-1</sup> (aromatic). Correct <sup>1</sup>H NMR spectrum [1].  $\delta$ (C) (CD<sub>3</sub>SOCD<sub>3</sub>) 115.0 (C(6))\*); 115.5 (C(9)\*); 118.5 (C(4)); 119.6 (C(1)); 121.7 (C(7)\*); 122.9 (C(8)\*); 123.1 (C(3)); 124.7 (C(2)); 140.4 (C(5a)\*\*); 140.5 (C(9a)\*\*), 140.8 (C(4a)); 141.3 (C(10a)); 165.1 (CO<sub>2</sub>H) ppm. m/z (100, M), 211 (11, M – OH), 183 (11, 211 – CO), 155 (6, 183 – CO), 127 (10, 155 – CO).

#### Methyldibenzo[b,e][1,4]dioxin-2-carboxylate (12)

A suspension of the aldehyde 4 (19 mg, 0.09 mmol), barium manganate (0.48 g, 1.89 mmol) [17,18], NaCN (23 mg, 0.48 mmol), and acetic acid (8  $\mu$ L, 0.14 mmol) in MeOH (10 mL) was stirred vigorously for 19 h, and the mixture was worked up to give a cream solid. Chromatography (Et<sub>2</sub>O/hexanes, 1:5) yielded methyl dibenzo[*b*,*e*][1,4]dioxin-2-carboxylate (12) (16 mg, 75%) as a white solid, m.p. 103–107.5 °C (lit. [36] m.p. 102–103 °C).  $\nu_{max}$ (KBr) 1730 (CO), 1592, 1507, 1495 (aryl C=C), 1320, 1285 (C–O), 750, 722 cm<sup>-1</sup> (aromatic).  $\delta$ (H) (60 MHz) 3.90 (s, OCH<sub>3</sub>); 6.88 (s, H(4, 6–9)); 7.51 (s, overlapping d, H(1), 0.5 H(3)); 7.66 (d,  $J_{1,3} = 2.0$  Hz, 0.5H(3)) ppm. m/z 242 (82, M), 211 (100, M – CH<sub>3</sub>O), 183 (53, 211 – CO), 155, (9, 183 – CO), 127 (29, 155 – CO).

Treatment of the ester 12 (11 mg, 0.05 mmol) with N,N-dimethyl-1,2-ethanediamine (100  $\mu$ L, 0.91 mmol) in a sealed vial at *ca*. 100 °C for 2.5 h and chromatography of the product on alumina (Et<sub>2</sub>O) gave N-[2-(dimethylamino) ethyl]dibenzo[*b*,*e*][1,4]dioxin-2-carboxamide (11) (11 mg, 82%). Correct <sup>1</sup>H NMR spectrum.

#### Dibenzo[b,e][1,4]dioxin-2-carboxylic acid (13)

The aldehyde 4 (74 mg, 0.35 mmol) in acetone (10 mL) was treated with Jones reagent (2.67 mol L<sup>-1</sup>, 1.20 mmol), and the mixture was worked up and chromatographed (Et<sub>2</sub>O/hexanes, 5:1) to yield dibenzo[*b*,*e*][1,4]dioxin-2-carboxylic acid (13) (72 mg, 90%) as a white solid, m.p. 245.5–247 °C (lit. [36] m.p. 239–241°C).  $\nu_{max}$ (KBr) 3500–2550 (OH), 1675 (CO), 1495, 1443 (aryl C=C), 1305 (C–O), 740 cm<sup>-1</sup> (aromatic).  $\delta$ (H) (CDCl<sub>3</sub>/CD<sub>3</sub>SOCD<sub>3</sub>) 6.89 (m, H(4,6–9)); 7.52 (s, H(1)); 7.62 (d, J<sub>3,4</sub> = 7.8 Hz, H(3)) ppm; CO<sub>2</sub>H not observed.  $\delta$ (C) (CDCl<sub>3</sub>/CD<sub>3</sub>SOCD<sub>3</sub>) 115.7 (C(4)); 116.1 (C(6,9)); 117.6 (C(1)); 123.7 (C(8)\*); 124.1 (C(7)\*); 125.8 (C(3)); 126.5 (C(2)); 141.2 (C(10a)); 141.39 (C(9a)\*); 141.42 (C(5a)\*); 145.4 (C(4a)); 166.9 (CO<sub>2</sub>H) ppm. *m*/*z* 228 (100, M), 211 (38, M – OH), 183 (31, 211 – CO), 155 (10, 183 – CO), 127 (19, 55 – CO).

Treatment of the acid 13 (0.17 g, 0.75 mmol) with N,N-dimethyl-1,2-ethanediamine (90  $\mu$ L, 0.82 mmol) and CDI (0.12 g, 0.75 mmol) in DMF (0.55 mL) at room temperature gave N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-2carboxamide (11) (0.22 g, 94%).

# N-[3-(Dimethylamino)propyl]dibenzo[b,e][1,4]dioxin-2-carboxamide (14)

The acid 13 (0.51 mmol) was treated with N,N-dimethyl-1,3-propanediamine (0.51 mmol) and CDI (0.51 mmol) in DMF (1 mL). Workup gave N-[3-(dimethyl-amino)propyl]dibenzo[b,e][1,4]dioxin-2-carboxamide (14) (0.15 g, 94%) which crystallized from hexanes as white needles, m.p. 101.5–103 °C. Anal. Found: C, 68.8;

H, 6.6; N, 9.0; M<sup>++</sup> 312.1478.  $C_{18}H_{12}N_2O_3$  calc.: C, 69.2; H, 6.5; N, 9.0%; M<sup>++</sup> 312.1474).  $\nu_{max}$ (KBr) 3325 (NH), 1630 (CO), 1530 (amide II), 1510 (aryl C=C), 1320, 1310 (C–O), 745 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 1.75 (quintet, J = 5.9 Hz, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 2.31 (s, NMe<sub>2</sub>); 2.50 (apparent t, J = 5.8 Hz, CH<sub>2</sub>NMe<sub>2</sub>); 3.54 (apparent q, J = 5.9, 5.7, 5.0 Hz, CONHCH<sub>2</sub>); 6.88 m, H(4,6–9)); 7.28 (d,  $J_{1,3} = 2.0$  Hz, H(1)); 7.30 (dd,  $J_{1,3} = 2.0, J_{3,4} = 8.3$  Hz, H(3)); 8.50 (s, NH) ppm.  $\delta$ (C) 25.1 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 40.8 (CONHCH<sub>2</sub>); 45.4 (N(CH<sub>3</sub>)<sub>2</sub>); 59.4 (CH<sub>2</sub>NMe<sub>2</sub>); 115.3 (C(1)); 116.1 (C(4)); 116.4 (C(9)\*); 116.5 (C(6)\*); 122.5 (C(3)); 124.0 (C(8)\*); 124.2 (C(7)\*); 130.7 (C(2)); 141.6 (C(10a)); 141.8 (C(9a)\*\*); 141.9 (C(5a)\*\*); 144.4 (C(4a)); 165.6 (CONH) ppm. m/z 312 (7%, M), 211 (16, M – NHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 183 (9, 211 – CO), 155 (2, 183 – CO), 127 (8, 155 – CO), 72 (20, CH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>), 44 (9, NMe<sub>2</sub>).

# Reaction of lithiated dibenzo[b,e][1,4]dioxin (2) with carbon dioxide

(a) Butyllithium (2.13 mol  $L^{-1}$  in hexanes, 1.20 mL, 2.56 mmol) was added dropwise with stirring to a solution of 2 (0.43 g, 2.33 mmol) in THF (23 mL) at -23 °C under N<sub>2</sub>, and after 20 min, CO<sub>2</sub> was bubbled into the mixture for 15 min. The atmosphere of CO<sub>2</sub> was maintained and the solution was allowed to warm to room temperature. After 2.5 h, the mixture was acidified with dilute H<sub>2</sub>SO<sub>4</sub> and solvent was removed to give a solid which was chromatographed (hexanes) to yield (i) dibenzodioxin (2) (72 mg, 17%), and on further elution (hexanes/CH<sub>2</sub>Cl<sub>2</sub>, 1:1) (ii) 1-pentanoyldibenzo[*b*,*e*][1,4]dioxin (16) (11 mg, 2%) as a colourless oil.  $\nu_{max}$ (CHCl<sub>3</sub>) 1655 (CO), 1595, 1495, 1465 (aryl C=C), 1270 (C-O), 830 cm<sup>-1</sup> (aromatic). *m/z* 268 (38%, M), 226 (32, M - C<sub>3</sub>H<sub>6</sub>), 211 (100, 226 - Me), 183 (27, 211 - CO), 155 (17, 155 - CO). Further elution (solvent A) and chromatography (EtOAc) yielded (iii) dibenzo[*b*,*e*][1,4]dioxin-1-carboxylic acid (15) (0.31 g, 59%).

Esterification of the crude product from (a) in MeOH (50 mL) and concentrated  $H_2SO_4$  (1.25 mL) under reflux for 2.5 h and chromatography ( $CH_2Cl_2$ /hexanes, 1:2) gave methyl dibenzo[*b*,*e*][1,4]dioxin-1-carboxylate (7) (0.41 g, 39%).

(b) Use of t-butyllithium (1.1 mol equiv.) and TMEDA (1.1 mol equiv) for 2 h gave the benzodioxin (2) (78%) and the acid (15) (5%). Esterification of the crude product from (b) and chromatography (CH<sub>2</sub>Cl<sub>2</sub>/hexanes, 1:2) yielded (i) methyl dibenzo[*b*,*e*][1,4]dioxin-1-carboxylate (7) (93 mg, 9%) and (ii) dimethyl dibenzo[*b*,*e*][1,4]dioxin-1,9-dicarboxylate (18) (0.12 g, 9%) which crystallized from acetone at 4°C.  $\nu_{max}$  (CHCl<sub>3</sub>) 1725 (CO), 1455 (aryl C=C), 1272 (C-O) cm<sup>-1</sup>. Correct <sup>1</sup>H NMR spectrum [39].  $\delta$ (C) 52.3 (2xCH<sub>3</sub>O); 119.9 (C(4,6)); 120.1 (C(1,9)); 123.5 (C(3,7)); 126.1 (C(2,8)); 141.7 (C(4a,5a); 142.4 (C(9a,10a)); 165.1 (2xCO<sub>2</sub>Me) ppm. *m*/*z* 300 (100, M), 269 (61, M – CH<sub>3</sub>O), 239 (37, 269 – CH<sub>2</sub>O), 211 (9, 239 – CO), 210 (2, 211 – H or M – 2CH<sub>3</sub>O–CO), 183 (7, 211 – CO), 170 (2, 269 – CH<sub>3</sub>-3CO), 155 (4, 183 – CO), 127 (6, 155 – CO), 126 (9, 210 – 3CO).

#### Reactions of lithiated dibenzo[b,e][1,4]dioxin-1-carboxylic acid (15)

(a) With carbon dioxide. Butyllithium (2.13 mol  $L^{-1}$  in hexanes, 0.32 mL, 0.68 mmol) was added dropwise to a stirred solution of the acid 15 (70 mg, 0.31 mmol) and TMEDA (102  $\mu$ L, 0.68 mmol) in THF (2 mL) at -78 °C under N<sub>2</sub>. After 35 min CO<sub>2</sub> was bubbled through the mixture for 15 min, and the mixture was allowed to warm to room temperature. After 1.5 h, the solution was acidified with dilute H<sub>2</sub>SO<sub>4</sub>, giving a white precipitate, and the solvent was removed. The crude

product, MeOH (20 mL), and concentrated  $H_2SO_4$  (0.5 mL) were heated under reflux for 3 h. Workup and chromatography (PLC) (CH<sub>2</sub>Cl<sub>2</sub>) yielded (i) 1-pentanoyldibenzo[*b,e*][1,4]dioxin (16) (5 mg, 6%); (ii) methyl dibenzo[*b,e*][1,4]dioxin-1-carboxylate (7) (15 mg, 17%); (iii) methyl 9-pentanoyldibenzo[*b,e*][1,4]dioxin-1-carboxylate (17) (4 mg, 4%) as a white solid. m/z 326 (44, M), 284 (35, M - C<sub>3</sub>H<sub>6</sub>), 269 (100, 284 - CH<sub>3</sub>), 252 (44, 284 - CH<sub>3</sub>OH), 239 (63, 269 - CH<sub>2</sub>O), 211 (35, 239 - CO), 183 (12, 211 - CO), 155 (7, 183 - CO), 127 (9, 155 - CO); and (iv) dimethyl dibenzo[*b,e*][1,4]dioxin-1,9-dicarboxylate (18) (27 mg, 30%).

(b) With iodine. Butyllithium (1.49 mol  $L^{-1}$  in hexanes, 0.27 mL, 0.41 mmol) was added dropwise to a stirred solution of the acid 15 (42 mg, 0.19 mmol) in THF (3 mL) at -78 °C under N<sub>2</sub>, and after 30 min a solution of I<sub>2</sub> (0.10 g, 0.41 mmol) in THF (1.5 mL) was added. After 30 min the solution was warmed to room temperature, acidified with dilute HCl, treated with NaCl and extracted into EtOAc. The extract was washed with dilute aqueous  $NaHSO_3$  and worked up to give a cream solid. Chromatography (PLC) (solvent A) gave (i) a mixture (MS) (16 mg) of the butyl ketone 16 (the major component) and 9-iodo-1-pentanoyldibenzo [b,e][1,4]dioxin (20) as a pale yellow oil. m/z (16) 268 (39, M), 226 (31, M - C<sub>3</sub>H<sub>6</sub>), 211 (100, 226 - CH<sub>3</sub>), 183 (26, 211 - CO), 155 (5, 183 - CO), 127 (13, 155 - CO). (20) 394 (3, M), 352 (3,  $M - C_3H_6$ ), 337 (4, 352 - CH<sub>3</sub>), 309 (1, 337 - CO); and (ii) 9-iododibenzo[b,e][1,4]dioxin-1-carboxylic acid (19) [25 mg, 38%) which crystallized from CH<sub>2</sub>Cl<sub>2</sub>/hexanes as white needles, m.p. 223-227 °C. Anal. Found: M<sup>+-</sup> 353.9415.  $C_{13}H_{17}O_4I$  calc.: M<sup>+-</sup> 353.9389.  $\nu_{max}$ (KBr) 3500–2400 (OH), 1690 (CO), 1452 (aryl C=C), 1275, 1250 cm<sup>-1</sup>.  $\delta$ (H) (CDCl<sub>3</sub>/CD<sub>3</sub>SOCD<sub>3</sub>) 6.67 (t, J = 8.0 Hz, H(7)); 6.80 (dd,  $J_{6,8} = 1.4$ ,  $J_{6,7} = 8.1$  Hz, H(6)); 6.96 (apparent t, J = 7.9, 7.7 Hz, H(3)); 6.99 (dd,  $J_{2,4} = 0.9$ ,  $J_{3,4} = 7.6$  Hz, H(4)); 7.33 (dd,  $J_{6,8} = 1.4$ ,  $J_{7,8} = 8.0$  Hz, H(8)); 7.53 (dd,  $J_{obs} = 1.2, 1.0, J_{2,3} = 7.8$  Hz, H(2)) ppm; CO<sub>2</sub>H not observed.  $\delta$ (C) (CDCl<sub>3</sub>/CD<sub>3</sub>SOCD<sub>3</sub>) 83.2 (C(9)); 116.3 (C(6)); 119.5 (C(4)); 120.9 (C(1)); 123.5 (C(3)); 125.6 (C(2)); 126.2 (C(7)); 133.7 (C(8)); 141.9 (C(4a)); 142.02 (C(10a)\*);142.04 (C(5a)\*); 142.4 (C(9a)); 166.1 (CO<sub>2</sub>H) ppm. m/z 354 (100, M), 337 (7, M - OH), 309 (4, 337 - CO), 227 (9, M - I), 100 (3, 227 - CO), 171 (2, 199 - CO); and (iii) acid 42 (21 mg, 50%).

# Reactions of lithiated N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-1-carboxamide (1)

(a) (i) Butyllithium (1.83 mol L<sup>-1</sup> in hexanes, 0.40 mL, 0.74 mmol) was added dropwise to a stirred solution of 1 (0.10 g, 0.34 mmol) in THF (5 mL) at  $-78 \,^{\circ}$  C under N<sub>2</sub>. After 25 min, DMF (90  $\mu$ L, 1.12 mmol) was added, and the stirring continued for 1.75 h. The mixture was allowed to warm to room temperature, and after 1.25 h was worked up and chromatographed (PLC) (CH<sub>2</sub>Cl<sub>2</sub>/EtOH/Et<sub>3</sub>N, 100:10:1) to yield 1 (47 mg, 47%) and *N*-[2-(dimethylamino)ethyl]-9-formyl-dibenzo[*b*,*e*][1,4]dioxin-1-carboxamide (21) (38.5 mg, 38%) which crystallized from CH<sub>2</sub>Cl<sub>2</sub>/hexanes as white crystals, m.p. 199.5–121.5 °C. Anal. Found: C, 66.4; H, 5.4; N, 8.9%; M<sup>++</sup> 326.1261. C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>O<sub>4</sub> calc.: C, 66.3, H, 5.6; N, 8.6%; M<sup>++</sup> 326.1267.  $\nu_{max}$ (KBr) 3420 (NH), 1678 (CHO), 1652 (CONH), 1575 (amide II), 1505, 1476, 1448 (aryl C=C), 1290, 1280 cm<sup>-1</sup> (C–O).  $\delta$ (H) 2.35 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.70 (apparent t, *J* = 6.6 Hz, CH<sub>2</sub>NMe<sub>2</sub>); 3.74 (apparent q, *J* = 6.5, 5.9, 6.4 Hz, CONHCH<sub>2</sub>); 6.95 (dd, *J*<sub>6,8</sub> = 1.8, *J*<sub>6,7</sub> = 7.9 Hz, H(6)); 7.02 (t, *J* = 7.9 Hz, H(7)); 7.11 (m, H(3,4)); 7.37 (dd, *J*<sub>2,4</sub> = 3.3, *J*<sub>2,3</sub> = 6.1 Hz, H(2)); 7.84 (dd, *J*<sub>6,8</sub> = 1.7,

 $J_{7,8} = 7.9$  Hz, H(8)); 8.60 (s, NH); 10.05 (s, CHO) ppm.  $\delta$ (C) 37.9 (CONHCH<sub>2</sub>); 35.3 (NMe<sub>2</sub>); 58.2 (CH<sub>2</sub>NMe<sub>2</sub>); 119.4 (C(4)); 122.0 (C(1)); 122.2 (C(6)); 124.0 (C(9)); 124.3 (C(2)); 124.5 (C(3)); 127.1 (C(7)); 128.2 (C(8)); 139.7 (C(10a)); 141.1 (C(4a)); 141.4, (C(5a)); 142.3 (C(9a); 163.1 (CONH); 189.5 (CHO) ppm. m/z 326 (< 1, M), 324 (< 1, M - H<sub>2</sub>), 256 (3, M - CH=CHNMe<sub>2</sub>), 239 (3, M - NHCH<sub>2</sub> CH<sub>2</sub>NMe<sub>2</sub>), 211 (2, 239 - CO), 183 (1, 211 - CO), 155 (1, 183 - CO), 127 (2, 155 - CO), 71 (25, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>).

(ii) Repetition of the reaction with the concentration of 1 at 0.20 mol  $L^{-1}$ , TMEDA (2.2 molar equiv.), a lithiation period of 2.75 h, and then with DMF (5 molar equiv) for 3 h yielded (i) 1 (6 mg, 26%); (ii) 21 (32 mg, 29%); and (iii) 2-[2-dimethylamino)ethyl]-3-hydroxy-10-hydroxymethyl-1H-[[1,4]benzodioxino][2,3glisoindol-1-one (70) (12 mg, 10%) as a colourless oil. Anal. Found:  $M^{+1}$  356.1369. C<sub>19</sub>H<sub>20</sub>N<sub>2</sub>O<sub>5</sub> calc.: M<sup>+-</sup> 356.1372). v<sub>max</sub>(film) 3375 (OH), 1690 (CO), 1492, 1470 (aryl C=C), 1289 (C-O), 755 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 2.43 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.54 (br d, J = 14.5 Hz, (CH<sub>a</sub>H<sub>b</sub>)NMe<sub>2</sub>); 2.78 (5 lines,  $J_{obs} = 2.5$ , 2.3, 12.0 Hz, (CH<sub>a</sub>CH<sub>b</sub>) NMe<sub>2</sub>); 3.24 (ddd,  $J_{obs} = 2.0$ , 11.0, 15.0 Hz, N(CH<sub>a</sub>H<sub>b</sub>)); 4.27 (apparent dt, J = 2.8, 3.8, 15.1 Hz, N(CH<sub>a</sub> $H_b$ )); 4.74 (d,  $J_{H_aH_b}$  = 13.1 Hz, (C $H_aH_b$ )OH); 4.82 (d,  $J_{H_aH_b}$  = 13.5 Hz, 5.68, s, CHOH); 6.81 (dd,  $J_{7,9} = 2.9$ ,  $J_{7,8} = 6.7$  Hz, H(7)); 6.89 (m, H(8,9)); 7.03 (d,  $J_{4,5} = 8.0$  Hz, H(5)); 7.09 (d,  $J_{4,5} = 8.0$  Hz, H(4)) ppm; (C<sub>a</sub>H<sub>b</sub>)OH and CHO*H* not observed.  $\delta$ (C) 39.2 (N(CH<sub>a</sub>H<sub>b</sub>)); 44.4 (N(CH<sub>3</sub>)<sub>2</sub>); 58.4 ((CH<sub>a</sub>H<sub>b</sub>)NMe<sub>2</sub>); 61.6 ((CH<sub>a</sub>H<sub>b</sub>)OH); 82.6 (CHOH); 115.9 (C(7)); 118.3 (C(5,11b)); 120.3 (C(9)); 123.8 (C(4)); 124.0 (C(8)); 129.8 (C(10)); 138.9 (C(3a)); 140.0 (C(5a)); 140.3 (C(10a)); 142.1 (C(11a)); 143.3 (C(6a)); 165.4 (CON) ppm. m/z 356 (4, M), 338 (1,  $M - H_2O$ ), 323 (<1, 338 - Me), 71 (19,  $CH_2$ =CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>).

(iii) Repetition of the reaction using butyllithium (4.4 molar equiv.), a lithiation period of 1 h, and DMF (20 molar equiv.) gave (i) (Z)-2-[2-(dimethylamino)ethyl]-10-formyl-3-hydroxy-5-pentenyl-1*H*-[[1,4]benzodioxino][2,3-g]isoindol-1-one (71) (30 mg, 16%) as a colourless oil. Anal. Found:  $M^{+-}$  422.1838.  $C_{24}H_{26}N_2O_5$  calc.: M<sup>+-</sup> 422.1842). ν<sub>max</sub>(CHCl<sub>3</sub>) 3400 (OH), 1697sh, 1682 (CO), 1489, 1462, 1447sh (aryl C=C), 1290 (C-O), 722 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 0.98 (t, J = 7.4, Hz, CH<sub>2</sub>CH<sub>2</sub>); 1.53 (sextet,  $J_{obs} = 7.4, 7.7, 8.0, 7.6, 7.4$  Hz,  $CH_2CH_2CH_3$ ); 2.42 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.46 (m,  $CH_2CH_2CH_3$ ); 2.54 (br d, J = 12.2 Hz,  $(CH_aH_b)NMe_2$ ); 2.78 (apparent dt,  $J = 2.5, 2.8, 3.3, 10.7, 13.8 \text{ Hz}, (CH_aH_b)NMe_2$ ; 3.25 (ddd,  $J_{obs} = 2.2, 11.1, 15.4 \text{ Hz}$ ,  $N(CH_aH_b)$ ; 4.26 (ddd,  $J_{obs} = 3.3, 5.0, 15.2$  Hz,  $N(CH_aH_b)$ ; 5.66 (s, CHOH); 6.88 (dd,  $J_{1,9} = 1.4$ ,  $J_{7,8} = 8.1$  Hz, H(7)); 6.98 (t, J = 8.0 Hz, H(8)); 7.00 (d (sh on upfield side of each component), J = 8.0 Hz, CH=CHCH<sub>2</sub>); 7.08 (d, (sh on upfield side of each component), J = 8.0 Hz, CH=CHCH<sub>2</sub>); 7.12 (dd,  $J_{79} = 1.3$ ,  $J_{89} = 8.1$  Hz, H(9)); 7.64 (s, H(4)); 9.70 (CHO) ppm; OH not observed.  $\delta$ (C) 14.4 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>); 21.7 ( $CH_2CH_2CH_3$ ); 27.0 ( $CH_2CH_2$ ); 39.5 ( $N(CH_aH_b)$ ); 44.5 ( $N(CH_3)_2$ ); 58.7 ((CH<sub>2</sub>H<sub>b</sub>)NMe<sub>2</sub>); 81.9 (CHOH); 117.4 (CH=CHCH<sub>2</sub>); 118.3 (C(11b)); 118.4 (C(4)); 120.1 (C(7)); 123.8 (C(8)); 124.1 (C(9,10)); 138.5 (C(3a)\*); 139.7 (C(5)\*); 140.5 (C(5a)); 141.7 (CH=CHCH<sub>2</sub>); 142.0 (C(11a)); 142.5 (C(6a)); 144.4 (C(10a)); 164.8 (CON); 196.0 (CHO) ppm. m/z 422 (2%, M), 421 (2, M – H), 71 (10,  $CH_2=CHNMe_2$ , 58 (100,  $CH_2NMe_2$ ); and (ii) 2-[2-(dimethylamino)ethyl]-3-hydroxy-10-formyl-1*H*-[[1,4]-benzodioxino][2,3-g]isoindol-1-one (72) (25 mg, 15%) as a white solid, m.p. 180-185°C. Anal. Found: M<sup>+-</sup> 354.1205. C<sub>19</sub>H<sub>18</sub>N<sub>2</sub>O<sub>5</sub> calc.: M<sup>+-</sup> 354.1216).  $\nu_{max}$ (CHCl<sub>3</sub>) 3360 (OH), 1690 (CO), 1472 (aryl C=C), 1285 cm<sup>-1</sup>

(C-O).  $\delta$ (H) 2.41 (s, N(CH<sub>3</sub>)<sub>2</sub>) 2.50 (m, (CH<sub>a</sub>H<sub>b</sub>)NMe<sub>2</sub>, CHOH); 2.75 (apparent dt, J = 2.5, 13.4, 10.9 Hz, (CH<sub>a</sub>H<sub>b</sub>)NMe<sub>2</sub>); 3.25 (ddd,  $J_{obs} = 2.0$ , 11.3, 14.9 Hz, N(CH<sub>a</sub>H<sub>b</sub>)); 4.25 (apparent dt J = 3.1, 15.1 Hz, N(CH<sub>a</sub>H<sub>b</sub>)); 5.66 (s, CHOH; 7.00, t, J = 7.8 Hz, H(8)); 7.02 (d,  $J_{4,5} = 8.0$  Hz, H(5)); 7.05 (dd,  $J_{7,9} = 1.7$ ,  $J_{7,8} = 7.9$  Hz, H(7)); 7.12 (d,  $J_{4,5} = 8.0$  Hz, H(4)); 7.47 (dd,  $J_{7,9} = 1.7$ ,  $J_{8,9} = 7.7$  Hz, H(9)); 10.6 (s, CHO) ppm.  $\delta$ (C) 39.6 (N(CH<sub>a</sub>H<sub>b</sub>)); 44.5 (N(CH<sub>3</sub>)<sub>2</sub>; 58.7 ((CH<sub>a</sub>H<sub>b</sub>)NMe<sub>2</sub>); 81.8 (CHOH); 118.6 (C(11b)); 118.8 (C(5)); 120.3 (C(7)); 121.8 (C(4)); 122.4 (C(8)); 124.1 (C(9)); 124.6 (C(10)); 137.9 (C(3a)); 140.8 (C(5a)); 142.1 (C(11a)); 142.3 (C(6a)); 144.2 (C(10a)); 164.6 (CON); 187.5 (CHO) ppm. m/z 354 (1%, M), 256 (4, M - CH=CHNMe<sub>2</sub>-CO), 239 (3, 256 - OH), 211 (2, 239 - CO), 71 (29, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>); and (iii) the aldehyde-amide **49** (22 mg, 15%).

(b) With  $CO_2$ . Butyllithium (2.0 mol L<sup>-1</sup> in hexanes, 0.27 mL, 0.54 mmol) was added dropwise to a stirred solution of the amide 1 (73 mg, 0.25 mmol) and TMEDA (0.08 mL, 0.53 mmol) in THF (1.6 mL) at  $-78 \degree \text{C}$  under N<sub>2</sub> and after 30 min CO<sub>2</sub> was bubbled into the solution. Workup yielded the zwitterionic form of 9-[N-[2-(dimethylamino)ethyl]carboxamide]dibenzo[b,e][1,4]dioxin-1-carboxylic acid (22) (51 mg, 61%) as a white solid, m.p. ca, 220 °C. Anal. Found: M<sup>++</sup> 342.1186.  $C_{18}H_{18}N_2O_5$  calc.: M<sup>++</sup> 342.1216).  $\nu_{max}$ (KBr) 3275 (NH), 1635 (CONH), 1563 (CO<sub>2</sub><sup>-</sup>), 1534 (amide (II), 1445 (aryl C=C), 1280 (C-O), 728 cm<sup>-1</sup> (aromatic).  $\delta(H)$  2.84 (s, +NH(CH<sub>3</sub>)<sub>2</sub>); 3.15 (apparent t, J = 4.8, 5.0 Hz, CH<sub>2</sub>NHMe<sub>1</sub><sup>+</sup>); 3.92 (apparent q, J = 5.3, 4.7, 5.2 Hz, CONHCH<sub>2</sub>); 6.94 (m, H(3,4,6,7),  $+NHMe_2$ ); 7.46 (dd,  $J_{6.8} = 2.3$ ,  $J_{7.8} = 7.2$  Hz, H(8)); 7.79 (dd,  $J_{2.4} = 2.9$ ,  $J_{2.3} = 6.8$  Hz, H(2)); 9.89 (s, CONH) ppm.  $\delta(C)$  3.51 (CONHCH<sub>2</sub>); 42.9 (<sup>+</sup>NH(CH<sub>3</sub>)<sub>2</sub>); 58.4 (CH<sub>2</sub>NHMe<sub>2</sub><sup>+</sup>); 118.1 (C(6)); 119.5 (C(4)); 120.6 (C(9)); 123.3 (C(8)); 123.8 (C(7)); 125.5 (C(1)); 126.0 (C(3); 126.2, C(2)); 140.3 (C(9a)); 141.2 (C(5a)); 142.1 (C(4a)); 142.3 (C(10a)); 163.8 (CONH); 169.5 (CO<sub>2</sub>) ppm. m/z 342 (1, M), 272 (10, M – CH=CHNMe<sub>3</sub>), 255,  $(3, 272 - OH \text{ or } M - NHCH_2CH_2NMe_2)$ , 227 (2, 255 - CO), 211 (3, 262 -HO-CONH<sub>2</sub>), 183 (2, 211 – CO), 71 (34,  $CH_2$ =CHNMe<sub>2</sub>), 58 (100,  $CH_2NMe_2$ ).

A suspension of **22** (48 mg, 0.14 mmol) in DMF (0.42 mL) was heated to 120 °C and CDI (45.5 mg, 0.28 mmol) was added, followed by *N*,*N*-dimethyl-1,2-ethanediamine (68  $\mu$ L, 0.62 mmol) after 20 min. After 50 min the mixture was worked up and chromatographed (PLC) (solvent A) to give (i) starting material (9 mg, 19%) in non-ionized form, as a cream solid.  $\nu_{max}$  (CHCl<sub>3</sub>) 3600–2800 (OH), 3380 (NH), 1696 (CO<sub>2</sub>H), 1648 (CONH), 1534 (amide II), 1452 (aryl C=C), 1280 cm<sup>-1</sup> (C–O).  $\delta$ (H) (60 MHz) 2.45 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.87 (m, CH<sub>2</sub>NMe<sub>2</sub>); 3.76 (m, CONHCH<sub>2</sub>); 6.84–7.35 (m, H(3,4,6–8)); 7.72–7.93 (m, H(2)); 10.08 (s, NH) ppm; CO<sub>2</sub>H not observed. *m/z* M not observed, 324 (1, M – H<sub>2</sub>O), 256 (6, M – HN=CHCH<sub>2</sub> NMe<sub>2</sub>), 239 (5, 256 – HO), 227 (1, M – NHCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>–CO or 256 – H–CO), 211 (2, 239 – CO), 183 (1, 211 – CO), 155 (1, 183 – CO), 127 (3, 155 – CO), 71 (32, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>); and (ii) **22** (9 mg, 19%).

A solution of the crude product (0.10 g, 0.34 mmol) in MeOH (20 mL) and concentrated  $H_2SO_4$  (0.5 mL) was heated under reflux for 6.25 h. Workup and chromatography on alumina (CH<sub>2</sub>Cl<sub>2</sub>/EtOH, 20:1) yielded methyl 9-[*N*-[2-(dimethylamino)ethyl]carboxamido]dibenzo[*b*,*e*][1,4]dioxin-1-carboxylate (23) (64 mg, 53%) which crystallized from CH<sub>2</sub>Cl<sub>2</sub>/ hexanes as white crystals, m.p. 122–124 °C. Anal. Found: C, 63.7; H, 5.6; N, 7.9; M<sup>++</sup> 356.1356. C<sub>19</sub>H<sub>20</sub>N<sub>2</sub>O<sub>5</sub> calc.: C, 64.0; H, 5.7; N, 7.9%; M<sup>++</sup> 356.1372).  $\nu_{max}$ (KBr) 3225 (NH), 1710 (CO<sub>2</sub>Me), 1650 (CONH),

1531 (amide II), 1450 (aryl C=C), 1290, 1265 cm<sup>-1</sup> (C-O).  $\delta$ (H) 2.32 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.65 (apparent t, J = 7.1 Hz,  $CH_2$ NMe<sub>2</sub>); 3.67 (apparent q, J = 6.8, 6.6, 6.5 Hz, CONHCH<sub>2</sub>); 3.87 (s, OCH<sub>3</sub>); 6.90 (dd  $J_{6,8} = 1.8$ ,  $J_{6,7} = 7.9$  Hz, H(6)); 6.92 (apparent t, J = 7.0, 8.0 Hz, H(3)); 6.97 (t, J = 8.0 Hz, H(7)); 6.99 (dd,  $J_{2,4} = 1.7$ ,  $J_{3,4} = 8.0$  Hz, H(4)); 7.51 (dd  $J_{2,4} = 1.7$ ,  $J_{2,3}$  7.9 Hz, H(2)); 7.84 (dd,  $J_{6,8} = 1.7$ ,  $J_{7,8} = 7.9$  Hz, H(8)); 9.03 (apparent t, J = 5.2 Hz, NH) ppm.  $\delta$ (C) 37.9 (CONHCH<sub>2</sub>); 45.3 (N(CH<sub>3</sub>)<sub>2</sub>); 52.2 (OCH<sub>3</sub>); 58.3 (CH<sub>2</sub>NMe<sub>2</sub>); 117.5 (C(1)); 119.3 (C(6)); 120.9 (C(4)); 121.6 (C(9)); 123.6 (C(3)), 123.8 (C(8)); 125.8 (C(7)); 126.9 (C(2)); 139.9 (C(9a)); 141.3 (C(5a)); 142.0 (C(4a)); 142.3 (C(10a)); 162.9 (CONH); 164.2 (CO<sub>2</sub>Me) ppm. m/z 356 (<1, M), 354 (<1, M - H<sub>2</sub>), 286 (12, M - CH=CHNMe<sub>2</sub>), 269 (4, 286 - NH<sub>3</sub>), 239 (2, 269 - CH<sub>2</sub>O), 120 (1, 239 - H-CO, or 269 - CH<sub>3</sub>O-CO), 183 (1, 239 - 2CO), 71 (33, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>).

(c) With phenyl isocyanate. Butyllithium (1.83 mol  $L^{-1}$  in hexanes, 0.42 mL, 0.77 mmol) was added dropwise to a stirred solution of 1 (70 mg, 0.23 mmol) and TMEDA (0.2 mL, 1.33 mmol) in THF (1 mL) at -78 °C under N<sub>2</sub>, and after 35 min, phenyl isocyanate (0.25 mL, 2.35 mmol) was added. Workup after 2.5 days followed by chromatography (PLC) yielded 9-(N-phenylcarboxamido)-N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-1-carboxamide (24) (43.5 mg, 44%) as a white solid, m.p. 222-225 °C. Anal. Found: M<sup>+-</sup> 417.1701. C<sub>24</sub>H<sub>23</sub>N<sub>3</sub>O<sub>4</sub> calc.: M<sup>+-</sup> 417.1689. v<sub>max</sub>(KBr) 3325 (NH), 1642 (CO), 1523 (amide II), 1454 (aryl C=C), 1278  $cm^{-1}$  (C-O).  $\delta$ (H) (CD<sub>3</sub>SOCD<sub>3</sub>) 2.49 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.86 (br s, CH<sub>2</sub>NMe<sub>2</sub>); 3.38 (br s, CONHC $H_2$ ); 7.16 (m, H(3,4,4',6,7)); 7.38 (apparent t, J = 7.4, 8.1 Hz, H(3',5); 7.42,  $J_{2'3'} = 7.7$  Hz, H(2); 7.47 (d,  $J_{5'6'} = 7.3$  Hz, H(6')); 7.76 (d, J = 7.5Hz, H(2,8)); 8.59 (s, CONHCH<sub>2</sub>); 10.50 (s, CONHPh) ppm.  $\delta$ (C) (CD<sub>3</sub>SOCD<sub>3</sub>) 35.3 (CONHCH<sub>2</sub>); 42.9 (N(CH<sub>3</sub>)<sub>2</sub>); 55.9 (CH<sub>2</sub>NMe<sub>2</sub>); 119.06 (C(4)\*); 119.12  $(C(6)^*); 120.7 (C(2,6')); 122.5 (C(1)^*); 123.9 (C(9)^*); 124.3 (C(2,4')^{**}); 124.5$  $(C(8)^{**}); 124.7 (C(3)^{\#}); 125.4 (C(7)^{\#}); 128.8 (C(3',5')); 138.6 (C(1')); 139.1$  $(C(10a)^{\oplus}); 139.4 (C(9a)^{\oplus}); 141.46 (C(4a)^{*}); 141.53 (C(5a)^{*}); 163.3 (CONHCH<math>\frac{1}{2});$ 163.4 (CONHPh<sup> $\ddagger$ </sup>) ppm. m/z 417 (1, M), 416 (< 1, M – H), 415 (1, M – H<sub>2</sub>), 373  $(1, M - NMe_2)$ , 359  $(M - CH_2NMe_2)$ , 347 (22, M - CH=CHNMe\_2), 330 (6, M -NHCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 254 (7,  $330 - C_6H_4$ ), 236 (4, 254 - H<sub>2</sub>O), 210 (6, 236 - CN), 182 (3, 210 – CO), 71 (55,  $CH_2$ =CHNMe<sub>2</sub>), 58 (100,  $CH_2NMe_2$ ).

(d) (i) With chlorotrimethylsilane. (i) Butyllithium (1.83 mol  $L^{-1}$  in hexane, 0.4 mL, 0.74 mmol) was added dropwise to a stirred solution of 1 (0.10 g, 0.34 mmol) in THF (5 mL) at -78 °C under N<sub>2</sub>, and after 35 min chlorotrimethylsilane (0.21 mL, 1.68 mmol) was added. After 1 h the mixture was allowed to warm to room temperature, MeOH (0.14 mL, 3.35 mmol) was added to react with the excess of chlorotrimethylsilane, and the mixture was worked up. PLC (solvent A) yielded 9-trimethylsilyl-N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-1-carboxamide (25) (49 mg, 40%) which crystallized from  $Me_2CO/hexane$  as white needles, m.p. 166-169 °C. Anal. Found: C, 64.6; H, 7.3; N, 7.5. C<sub>20</sub>H<sub>26</sub>N<sub>2</sub>O<sub>3</sub>Si calc.: C, 64.8; H, 7.1; N, 7.6%. v<sub>max</sub>(KBr) 3320 (NH), 1640 (CO), 1545 (amide II), 1465, 1425 (aryl C=C), 1270 (C-O), 1235, 830, 750 cm<sup>-1</sup> (SiMe<sub>3</sub>).  $\delta$ (H) 0.34 (s, Si(CH<sub>3</sub>)<sub>3</sub>); 2.35 (s,  $N(CH_3)_2$ ; 2.63 (apparent t, J = 6.0 Hz,  $CH_2NMe_2$ ); 3.59 (apparent q, J = 5.7 Hz CONHC $H_2$ ); 6.65 (NH); 6.86 (dd,  $J_{6,8} = 1.5$ ,  $J_{6,7} = 7.8$  Hz, H(6)); 6.92 (m, H(3,4,7)); 6.98 (dd,  $J_{7,8} = 7.2$  Hz, H(8)); 7.22 (dd,  $J_{2,4} = 2.7$ ,  $J_{2,3} = 6.5$  Hz, H(2)) ppm.  $\delta$ (C) -1.1 (Si(CH<sub>3</sub>)<sub>3</sub>); 37.2 (CONHCH<sub>2</sub>); 45.1 (N(CH<sub>3</sub>)<sub>2</sub>); 57.8 (CH<sub>2</sub>NMe<sub>2</sub>); 117.8 (C(6)); 118.3 (C(4)); 123.5 (C(2)); 123.9 (C(7)); 124.3 (C(3)); 124.6 (C(1)); 127.6 (C(9)); 129.3 (C(8)); 140.1 (C(10a)); 141.4 (C(4a)); 142.4 (C(5a)); 145.7 (C(9a)); 165.6 (CONH) ppm. m/z 370 (1%, M), 368 (1%, M – H<sub>2</sub>), 355 (1, M – Me), 326 (1, M – NMe<sub>2</sub>), 71 (39, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>); and (ii) N-[2-(dimeth-ylamino)ethyl]dibenzo[*b,e*][1,4]dioxin-1-carboxamide (**26**) (61 mg, 55%) as a white solid.  $\delta$ (H) (60 MHz) 2.69 (s, <sup>+</sup>NH(CH<sub>3</sub>)<sub>2</sub>); 3.10 (2 lines,  $J_{obs} = 5.5$  Hz,  $CH_2$ NHMe<sub>2</sub><sup>+</sup>); 3.5 (apparent q, J = 5.5, 6.0, 5.5 Hz, CONHCH<sub>2</sub>); 6.82–6.94 (m, H(3,4,6–9), <sup>+</sup>NHMe<sub>2</sub>); 7.58 (3 lines,  $J_{obs} = 4.5$ , 5.0 Hz, H(2)); 8.10 (s, CONH) ppm.

(ii) Chlorotrimethylsilane (23  $\mu$ L, 0.18 mmol) was added dropwise to a solution of 1 (50 mg, 0.17 mmol) and TMEDA (56  $\mu$ L, 0.37 mmol in THF (0.8 mL) at room temperature under N<sub>2</sub>, the mixture was cooled to -78 °C, and butyllithium (2.0 mol L<sup>-1</sup> in hexanes, 0.18 mL, 0.37 mmol) added dropwise with stirring. After 1.5 h the mixture was allowed to warm to room temperature for 1.5 h, MeOH (34  $\mu$ L, 0.84 mmol) was added, followed by water, and then the mixture was shaken with CH<sub>2</sub>Cl<sub>2</sub>. Workup and chromatography (PLC) (solvent A) gave (i) 2-trimethylsilyl-N-2-[dimethylamino)dibenzo[*b*,*e*][1,4]dioxin-1-carboxamide (27) (9 mg, 15%) as a pale yellow oil.  $\delta$ (H) 0.25 (s, Si(CH<sub>3</sub>)<sub>3</sub>); 2.38 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.68 (m, CH<sub>2</sub>NMe<sub>2</sub>); 3.60 (m, CONHCH<sub>2</sub>); 6.84 (d, J<sub>3,4</sub> = 8.0 Hz, H(4)); 6.85 (m, H(6-9)); 7.02 (s, NH); 7.10 (d, J<sub>3,4</sub> = 8.0 Hz, H(3)) ppm.  $\delta$ (C) 0.2 (Si(CH<sub>3</sub>)<sub>3</sub>); 37.0 (CONHCH<sub>2</sub>); 44.9 (N(CH<sub>3</sub>)<sub>2</sub>); 75.5 (CH<sub>2</sub>NMe<sub>2</sub>); 116.4 (C(4)); 116.5 (C(9)\*); 116.8 (C(6)\*); 123.9 (C(8)\*); 124.2 (C(7)\*); 130.4 (C(3)) ppm; quaternary carbons not observed; and (ii) a mixture (<sup>1</sup>H NMR) (36 mg) of 1 (*ca.* 27 mg, 54%) and **25** (*ca.* 9 mg, 14%) as a white oily solid.

(iii) Butyllithium (1.6 mol  $L^{-1}$  in hexanes, 0.18 mL, 0.29 mmol) was added dropwise to a stirred solution of 1 (71 mg, 0.24 mmol) and TMEDA (0.09 mL, 0.57 mmol) in THF (1.25 mL) at -78 °C under N<sub>2</sub> and after 15 min chlorotrimethylsilane (37 µL, 0.29 mmol) was added. A second aliquot of butyllithium was added after 15 min, and the mixture worked up and chromatographed (PLC) (solvent A) to yield 2,9-bis(trimethylsilyl)-N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-1carboxamide (28) (10 mg, 9%) as a colourless oil. Anal. Found: M<sup>+-</sup> 442.2104.  $C_{23}H_{34}N_2O_3Si_2$  calc.: M<sup>++</sup> 442.2108.  $\nu_{max}$ (film) 3350 (NH), 1650 (CO), 1575 (amide II), 1460 (aryl C=C), 1270 (C-O), 1225, 825, 745 cm<sup>-1</sup> (SiMe<sub>3</sub>).  $\delta$ (H) 0.27 (s, 2-Si(CH<sub>3</sub>)<sub>3</sub>); 0.31 (s, 9-Si(CH<sub>3</sub>)<sub>3</sub>); 2.25 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.54 (apparent t, J = 5.9 Hz,  $CH_2(CH_3)_2$ ; 3.52 (apparent q, J = 5.5, 5.5, 5.8 Hz, CONHC $H_2$ ); 6.56 (s, NH; 6.81, d,  $J_{3,4} = 8.0$  Hz, H(4)); 6.82 (dd  $J_{6,8} = 1.9$ ,  $J_{6,7} = 7.9$  Hz, H(6)); 6.87 (t, J = 7.5 Hz, H(7)); 6.94 (dd,  $J_{6.8} = 1.8$ ,  $J_{7.8} = 7.2$  Hz, H(8)); 7.05 (d,  $J_{3.4} = 8.0$  Hz, H(3)) ppm.  $\delta(C) - 1.15 (9-Si(CH_3)_3); -0.15 (2-Si(CH_3)_3); 37.0 (CONHCH_2); 45.0 (N(CH_3)_2);$ 57.0 (CH,NMe,); 116.1 (C(4)); 117.5 (C(6)); 123.8 (C(7)); 127.8 (C(9)); 129.9 (C(8)); 130.0 (C(3)); 131.7 (C(1)); 132.9 (C(2)); 139.1 (C(10a)); 141.0 (C(4a)); 142.7 (C(5a)); 146.0 (C(9a)); 167.0 (CONH) ppm. m/z 442 (<1, M), 427 (5, M - CH<sub>3</sub>),71 (21, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>); and a mixture (<sup>1</sup>H NMR) (17 mg) of 25 (ca. 10 mg, 11%) and 13 (ca. 7 mg, 10%).

(iv) Butyllithium (2.0 mol  $L^{-1}$  in hexanes, 0.18 mL, 0.37 mmol) was added dropwise with stirring to a solution of 2,2,6,6-tetramethylpiperidine (62  $\mu$ L, 0.37 mmol) in THF (1.25 mL) at -78 °C under nitrogen. After 30 min, (CH<sub>3</sub>)<sub>3</sub>SiCl (0.21 mL, 1.68 mmol) was added, followed by a solution of the amide 1 (50 mg, 0.17 mmol) in THF (1.5 mL). The cooling bath was removed after 1 h and the mixture was allowed to warm to room temperature. After 1.25 h, workup gave the 9-silyl derivative **25** (37 mg, 60%) and the starting amide 1 (6.5 mg, 13%).

(e) With t-butylchlorodimethylsilane. Butyllithium (2.0 mol  $L^{-1}$  in hexanes, 0.18 mL, 0.37 mmol) was added dropwise to a stirred solution of 1 (0.10 g, 0.34 mmol) and TMEDA (0.11 mL, 0.74 mmol) in THF (1.6 mL) at -78 °C under N<sub>2</sub>. After 15 min a cooled solution of t-butylchlorodimethylsilane (1.64 mol  $L^{-1}$  in THF, 0.22 ml, 0.36 mmol) was added, followed after 15 min by a second aliquot of butyllithium. DMF (0.10 mL, 1.29 mmol) was added after 30 min and after a further 30 min the mixture was worked up. PLC (solvent A) gave (i) 2-(t-butyldimethylsilyl)-N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-1-carboxamide (29) (82 mg, 59%) as a colourless oil, b.p. (Kugelrohr) 145-155°C/0.07 mmHg. Anal. Found: C, 66.8; H, 7.9; N, 6.8; M<sup>+</sup>-Me 397.1944. C<sub>23</sub>H<sub>32</sub>N<sub>2</sub>O<sub>3</sub>Si calc.: C, 67.0; H, 7.8; N, 6.8%; M<sup>+</sup>-Me 397.1947.  $\nu_{max}$ (CHCl<sub>3</sub>) 3375 (NH), 1655 (CO), 1580 (aryl C=C), 1508 (amide II), 1494, 1467 (aryl C=C), 1285 (C-O), 1250 (SiMe<sub>2</sub>), 832 (aromatic), 815  $cm^{-1}$  (SiMe<sub>2</sub>).  $\delta$ (H) 0.22 (s, Si(CH<sub>3</sub>)<sub>2</sub>); 0.88 (s, C(CH<sub>3</sub>)<sub>3</sub>); 2.22 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.51 (apparent t, J = 5.9 Hz,  $CH_2NMe_2$ ); 3.49 (apparent q, J = 5.7, 6.6, 6.6 Hz, CONHC $H_2$ ); 6.40 (s, NH); 6.80 (d,  $J_{3,4} = 8.0$  Hz, H(4)); 6.81 (m, H(6-9)); 7.03 (d,  $J_{34} = 8.1$  Hz, H(3)) ppm.  $\delta$ (C) 4.5 (Si(CH<sub>3</sub>)<sub>2</sub>); 17.5 (C(CH<sub>3</sub>)<sub>3</sub>); 27.1 (C(CH<sub>3</sub>)<sub>3</sub>); 37.1 (CONHCH<sub>2</sub>); 44.9 (N(CH<sub>3</sub>)<sub>2</sub>); 57.3 (CH<sub>2</sub>NMe<sub>2</sub>); 115.8 (C(4)); 116.3 (C(9)\*, 116.5,  $C(6)^*$ ; 123.86 ( $C(8)^*$ ); 123.92 ( $C(7)^*$ ); 130.9 (C(1)); 131.7 (C(3)); 132.0 (C(2)); 138.7 (C(10a)); 141.8 (C(4a)); 142.1 (C(9a)\*\*); 142.5 (C(5a)\*\*), 166.9(CONH) ppm. m/z M not observed, 410 (< 1, M – H<sub>2</sub>), 397 (1, M – CH<sub>3</sub>); 355  $(17, M - C_4H_9)$ , 269 (13, 355 - HN=CHCH<sub>2</sub>NMe<sub>2</sub>), 72 (61, CH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>); and (ii) 2 (13 mg, 13%).

Reaction in the absence of DMF gave the same products.

# Reactions of lithiated 2-(t-butyldimethylsilyl)-N-[2-(dimethylamino)ethyl]dibenzo [b,e][1,4]dioxin-1-carboxamide (29)

(a) With DMF. s-Butyllithium (0.95 mol  $L^{-1}$ , 0.29 mL, 0.27 mmol) was added dropwise to a stirred solution of 29 (37 mg, 0.09 mmol) and TMEDA (41 $\mu$ L, 0.27 mmol) in THF (0.65 mL) at -78 °C under N<sub>2</sub>. After 1.25 h DMF (70  $\mu$ L, 0.90 mmol) was added, and after a further 30 min the mixture was worked up. PLC (solvent A) afforded (i) 2-(t-butyldimethylsilyl)-N-[2-(dimethylamino)ethyl]-6-formyldibenzo[b,e][1,4]dioxin-1-carboxamide (41) (6 mg, 16%) as a colourless oil. Anal. Found:  $M^+-C_4H_9$  383.1390.  $C_{24}H_{32}N_2O_4Si$  calc.:  $M^+-C_4H_9$  383.1427).  $\nu_{max}$ (CHCl<sub>3</sub>) 3410 (NH), 1685 (CHO), 1655 (CONH), 1585 (aryl C=C), 1509 (amide II), 1465 (aryl C=C), 1282 (C-O), 1244, 815 cm<sup>-1</sup> (SiMe<sub>2</sub>).  $\delta$ (H) 0.23 (s, Si(CH<sub>3</sub>)<sub>2</sub>); 0.89 (s, C(CH<sub>3</sub>)<sub>3</sub>); 2.32 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.65 (m, CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>); 3.58 (m, CONHCH<sub>2</sub>); 6.85 (d,  $J_{3,4} = 8.1$  Hz, H(4)); 16.96 (apparent t, J = 8.0, 7.3 Hz, H(8)); 7.05 (dd,  $J_{obs} = 1.7$ , 1.4,  $J_{8,9} = 7.9$  Hz, H(9)); 7.12, d,  $J_{3,4} = 8.1$  Hz, H(3)); 7.38 (dd  $J_{7,9} = 1.6$ ,  $J_{7.8} = 7.8$  Hz, H(7)); 7.50 (s, NH); 10.27 (s, CHO) ppm. m/z M not observed, 412  $(1, M - CH_3), 409 (< 1, M - CH_3 - 3H), 397 (1, 425 - CO), 383 (5, M - C_4 H_0),$ 355 (11, 383 - CO), 72 (38, CH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>); and (ii) 2-(t-butyldimethylsilyl)-N-[2-(dimethylamino)ethyl]-9-formyldibenzo[b,e][1,4]dioxin-1carboxamide (30) (12 mg, 31%) as a colourless oil. Anal. Found: 424. M<sup>+</sup>-CH<sub>3</sub>-H 1770; M<sup>+-</sup>-2CH<sub>3</sub>-H 409.1547. C<sub>24</sub>H<sub>32</sub>N<sub>2</sub>O<sub>4</sub>Si calc.: M<sup>+-</sup>CH<sub>3</sub>-H 424.1818, M<sup>+-</sup> 2CH<sub>3</sub>-H, 409.1584). v<sub>max</sub>(CHCl<sub>3</sub>) 3375 (NH), 1690 (CHO), 1655 (CONH), 1585 (aryl C=C), 1517 (amide II), 1465 (aryl C=C), 1282 (C-O), 1242, 815 cm<sup>-1</sup> (SiMe<sub>2</sub>).  $\delta(H) 0.35$  (s, Si(CH<sub>3</sub>)<sub>2</sub>); 0.90 (s, C(CH<sub>3</sub>)<sub>3</sub>); 2.40 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.71 (m, CH<sub>2</sub>NMe<sub>2</sub>); 3.65 (m, CONHC  $H_2$ ); 6.87 (d,  $J_{34} = 8.2$  Hz, H(4)); 6.98 (t, J = 7.9 Hz, H(7)); 7.06 (dd,  $J_{6,8} = 1.7$ ,  $J_{6,7} = 7.9$  Hz, H(6)); 7.11 (d,  $J_{3,4} = 8.2$  Hz, H(3)); 7.39 (dd,  $J_{6,8} = 1.6$ ,  $J_{7,8} = 7.8$  Hz, H(8)); 7.50 (s, NH); 10.23 (s, CHO) ppm.  $\delta$ (C) -3.3 ((Si(CH<sub>3</sub>)<sub>2</sub>); 19.3 (CMe<sub>3</sub>); 26.6 (C(CH<sub>3</sub>)<sub>3</sub>); 36.8 (CONHCH<sub>2</sub>); 44.9 (N(CH<sub>3</sub>)<sub>2</sub>); 58.1 (CH<sub>2</sub>NMe<sub>2</sub>); 116.7 (C(4)); 121.9 (C(6)); 123.5 (C(7)); 123.8 (C(8)); 124.1 (C(9)); 130.7 (C(1)); 132.0 (C(3)); 133.3 (C(2)); 138.4 (C(10a)); 142.2 (C(4a)); 142.5 (C(5a)); 144.2 (C(9a)); 167.1 (CONH); 187.8 (CHO) ppm. m/z M not observed, 424 (3, M – Me–H)); 142.5 (C(5a)); 144.2 (C(9a)); 167.1 (CONH); 187.8 (CHO) ppm. m/z M not observed, 424 (3, M – Me–H), 409 (3, 424 – Me), 354 (15, M – C<sub>4</sub>H<sub>9</sub>–H–CO), 71 (20, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>).

(b) With  $CO_2$ . t-Butyllithium (1.03 mol L<sup>-1</sup> in pentane, 0.47 mL, 0.48 mmol) was added dropwise to a stirred solution of 29 (90 mg, 0.22 mmol) and TMEDA (72  $\mu$ L, 0.48 mmol) in THF (1.5 mL) at -78 °C under N<sub>2</sub> and after 1 h CO<sub>2</sub> was bubbled into the solution for 5 min. After 16 h, the mixture was worked up to yield a mixture (1.5:1) (<sup>1</sup>H NMR) of 8-(t-butyldimethylsilyl)-9-[N-[2-(dimethylamino)ethvl]carboxamido]dibenzo[b.e][1.4]dioxin-1-carboxylic acid (31) and 7-(t-butyldimethylsilyl)-6-[N-[2]-(dimethylamino]carboxamido]dibenzo[b,e][1,4]dioxin-1-carboxylic acid (42), as a yellow oil (53.5 mg, 54%). PLC on neutral alumina (solvent A) gave a colourless oil. Anal. Found:  $M^+-C_4H_9$  399.1373.  $C_{24}H_{32}N_2O_5Si$  calc.:  $M^+-C_4H_9$ 399.1376.  $\nu_{max}$ (CHCl<sub>3</sub>) 3425 (OH, NH), 1645 (CO<sub>2</sub>H), 1635 (CONH), 1615, 1580, 1556 (aryl C=C), 1520 (amide II), 1455 (aryl C=C), 1275 (C-O), 1260, 810 cm<sup>-1</sup>  $(SiMe_2)$ .  $\delta(H)$  (31): 0.14 (s, Si(CH\_3)\_2); 0.84 (s, C(CH\_3)\_3); 2.26 (s, N(CH\_3)\_2); 2.52 (br s,  $CH_2NMe_2$ ); 3.45 (br s,  $CONHCH_2$ ); 6.67 (br s, H(3,6)); 6.79 (d,  $J_{3,4} = 7.9$ Hz, H(4)); 7.09 (d,  $J_{2,3} = 7.9$  Hz, H(2)); 7.30 (br s H(7)); 8.56 (s, NH) ppm; CO<sub>2</sub>H not observed; and (42): 0.29 (s, Si(CH<sub>3</sub>)<sub>2</sub>); 0.84 (s, C(CH<sub>3</sub>)<sub>3</sub>); 2.31 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.64 (br s,  $CH_2NMe_2$ ); 3.55 (br s,  $CONHCH_2$ ); 6.67 (br s, H(3,9)); 6.74, d,  $J_{3,4} = 8.0$  Hz, H(4)); 7.03 (d,  $J_{2,3} = 8.0$  Hz, H(2)); 7.22 (br s, H(8)); 7.76 (s, NH) ppm; CO<sub>2</sub>H not observed.  $\delta$ (C) (31): -3.5 (Si(CH<sub>3</sub>)<sub>2</sub>); 19.7 (CMe<sub>3</sub>); 27.1  $(C(CH_3)_3)$ ; 36.9  $(CONHCH_2)$ ; 44.3  $(N(CH_3)_2)$ ; 57.8  $(CH_2NMe_2)$ ; 116.1 (C(6)): 117.0 (C(4)); 123.2 (C(1,3)); 126.0 (C(2)); 128.3 (C(9)); 131.3 (C(7)); 133.9 (C(8)); 139.4 (C(9a)); 140.3 (C(5a)); 141.8 (C(4a)); 142.9 (C(10a)); 167.7 (CONH); 170.9  $(CO_2H)$ ; and (42): -2.8 (Si $(CH_3)_2$ ); 17.7 ( $C(CH_3)_2$ ); 17.5 ( $C(CH_3)_3$ ); 36.7 (CON-HCH<sub>2</sub>); 44.2 (N(CH<sub>3</sub>)<sub>2</sub>); 57.3 (CH<sub>2</sub>NMe<sub>2</sub>); 117.0 (C(9)); 117.3 (C(4)); 123.1 (C(3)); 125.4 (C(2)); 127.1 (C(1)); 130.3 (C(6)); 131.9 (C(8)); 132.2 (C(7)); 140.1 (C(5a); 140.2 (C(9a)); 142.0 (C(4a)); 142.6 (C(10a)); 167.4 (CONH); 170.9 (CO<sub>2</sub>H) ppm. m/z M not observed, 441 (3, M – Me), 399 (26, M – C<sub>4</sub>H<sub>9</sub>), 370 (13, 399 – CHO), 72 (35, CH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>).

# Bromination of dibenzo[b,e][1,4]dioxin (2)

A solution of *N*-bromosuccinimide (0.19 g, 1.09 mmol) in DMF [42] (5.5 mL) was added dropwise to a stirred solution of **2** (0.20 g, 1.09 mmol) in DMF (5.5 mL). The solution was allowed to stand for 1 h and re-treated with NBS (0.12 g, 0.65 mmol) in DMF (3 mL). After 72 h workup and chromatography gave an inseparable mixture (1.9:1.0:0.19:0.13) (<sup>13</sup>C NMR) of **32**, 2,8-dibromodibenzo[*b,e*][1,4]dioxin (**33**), and 2,7-dibromodibenzo[*b,e*][1,4]dioxin (**43**) as a white solid (0.20 g).  $\delta$ (H) (**32**): 6.62 (d,  $J_{3,4} = 8.1$  Hz, H(4)); 6.78 (m, H(7,8)); 6.83 (m, H(6,9)); 6.90 (s, H(1)); 6.91 (dd,  $J_{1,3} = 2.3$ ,  $J_{3,4} = 8.0$  Hz, H(3)) ppm.  $\delta$ (C) (**32**): 115.2 (C(2)); 116.37 (C(6)\*); 116.40 (C(9)\*); 117.5 (C(4)); 119.5 (C(1)); 124.0 (C(7)\*); 124.1 (C(8)\*); 126.5 (C(3)); 141.4 (C(4a)); 141.5 (C(5a)\*\*); 141.7 (C(9a)\*\*); 142.8 (C(10a)) ppm.

(33): 117.6 (C(4,6)); 119.6 (C(1,9)); 126.9 (C(3,7)) ppm; quaternary carbons not observed. (43): 117.6 (C(4,9)); 119.5 (C(1,6)); 126.8 (C(3)) ppm; quaternary carbons not observed. m/z (32): 264, 262 (50, M), 155 (22, M – Br–CO); 127 (21, 155 – CO); and (33) and (43): 344, 342, 340 (10, 20, 10, M).

#### Metal-halogen exchange and quenching of 2-bromodibenzo [b,e][1,4]dioxin (32)

(a) With chlorotrimethylsilane. Butyllithium (2.0 mol L<sup>-1</sup> in hexanes, 0.19 mL, 0.38 mmol) was added dropwise to a stirred mixture of **32**, **2**, and the dibromodibenzodioxins **33** and **43** (2.3:1.0:0.37:0.30) (0.11 g, ca. 0.24 mmol **32**) in THF (1.5 mL) at  $-78 \,^{\circ}$ C under N<sub>2</sub>. After 7 min, chlorotrimethylsilane (0.40 mL, 3.13 mmol) was added. After a further 60 min the mixture was worked up and the crude product was heated at 70-80  $^{\circ}$ C/0.1 mmHg (Kugelrohr) to distil out the more volatile dibenzodioxin contaminants and leave a residue of 2-trimethylsilyldibenzo [*b*,*e*][1,4]dioxin (**34**) (53 mg, 87%) as a white waxy solid, m.p. 55-59  $^{\circ}$ C.  $\nu_{max}$ (KBr) 1580, 1490, 1458 (aryl C=C), 1280 (C-O), 1240, 830 (SiMe<sub>3</sub>), 815 (aromatic), 745 (SiMe<sub>3</sub>), 740 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 0.22 (s, Si(CH<sub>3</sub>)<sub>3</sub>); 6.82 (d, J<sub>3,4</sub> = 7.9 Hz, H(4)); 6.85 (m, H(6-9)); 6.96 (d, J<sub>1,3</sub> = 1.4 Hz, J<sub>3,4</sub> = 7.8 Hz, H(3)) ppm.  $\delta$ (C) -1.2 (Si(CH<sub>3</sub>)<sub>3</sub>); 116.0 (C(4)), 116.4 (C(6,9)); 120.9 (C(1)); 123.6 (C(8)\*); 123.8 (C(7)\*); 128.9 (C(3)); 136.1 (C(2)); 141.7 (C(10a)); 142.2 (C(4a)); 142.4 (C(9a)\*); 142.7 (C(5a)\*) ppm. *m/z* 256 (60%, M), 241 (100, M – Me).

(b) With-t-butylchlorodimethylsilane. Repetition of (a) using a mixture (1.90:1.00:0.19:0.13) of 2-bromodibenzodioxin (32), 2, 33, and 43 and t-butylchlorodimethylsilane gave mainly 2 which was sublimed out, leaving a yellow oil (14 mg) which was a mixture (2:1) (<sup>13</sup>C NMR) of 2-butyl-8-(t-butyldimethyl-siloxy)dibenzo[*b*,*e*][1,4]dioxin (35) and 2-butyl-7-(t-butyldimethylsiloxy)dibenzo[*b*,*e*][1,4]dioxin (44), b.p. (Kugelrohr) 85–90 ° C/0.08 mmHg. Anal. Found: C, 71.0; H, 7.6.  $C_{22}H_{30}O_3$ Si calc.: C, 71.3; H, 8.2%.  $\nu_{max}$ (CHCl<sub>3</sub>) 1585, 1492 (aryl C=C), 1285 (C–O), 1250, 830 cm<sup>-1</sup> (SiMe<sub>2</sub>).  $\delta$ (H) (35); 0.16 (s, Si(CH<sub>3</sub>)<sub>2</sub>); 0.93 (m, CH<sub>2</sub>CH<sub>3</sub>); 0.95 (s, C(CH<sub>3</sub>)<sub>3</sub>); 1.23 (br s, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 6.35 (d, *J*<sub>6,7</sub> = 7.8 Hz, H(7)); 6.36 (s, H(9)); 6.79 (*J*<sub>6,7</sub> = 7.9 Hz, H(6)); 6.84 (m, H(1,3,4)) ppm.  $\delta$ (C) (35): -4.5 (Si(CH<sub>3</sub>)<sub>2</sub>); 13.9 (CH<sub>2</sub>CH<sub>2</sub>); 18.2 (C(CH<sub>3</sub>)<sub>3</sub>); 18.9 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>); 25.6 (C(CH<sub>3</sub>)<sub>3</sub>); 29.7 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>); 41.0 (CH<sub>2</sub>CH<sub>2</sub>); 108.4 (C(9)); 114.7 (C(7)); 116.3 (C(1,4)); 116.3 (C(6)); 123.8 (C(3)); 136.54 (C(5a)); 140.9 (C(2)); 142.1 (C(4a)); 142.2 (C(10a)); 142.3 (C(9a)); 151.6 (C(8)) ppm. *m*/z 370 (1, M), 314 (50, M – C<sub>4</sub>H<sub>8</sub>), 257 (100, 314 – C<sub>4</sub>H<sub>9</sub>).

## Acyl-desilylation of 2-trimethylsilyldibenzo [b,e][1,4]dioxin (34)

A mixture of **34** (26 mg, 0.10 mol) and resublimed AlCl<sub>3</sub> (27 mg, 0.20 mmol) was cooled to 0 °C, and acetyl chloride (7  $\mu$ L, 0.10 mmol) was added. After heating under reflux for 1 h the mixture was cooled and worked up. PLC (CH<sub>2</sub>Cl<sub>2</sub>/hexanes, 1:1) gave (i) **2** (10 mg, 56%), and (ii) 2-acetyldibenzo[*b*,*e*][1,4]dioxin [38] (8 mg, 36%) as white crystals, m.p. 129–132 °C.  $\nu_{max}$ (KBr) 1670 (C=O), 1590, 1497, 1427 (aryl C=C), 1300 (C–O), 752 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 2.53 (s, CH<sub>3</sub>); 6.90 (m, H(4)), H(6–9)); 7.45 (d,  $J_{1,3} = 2.0$  Hz, H(1)); 7.53 (dd,  $J_{1,3} = 2.0$ ,  $J_{3,4} = 8.4$  Hz, H(3)) ppm.  $\delta$ (C) 26.4 (CH<sub>3</sub>); 116.3 (C(1)\*); 116.45 (C(4)\*); 116.51 (C(9)\*); 116.53 (C(6)\*); 124.1 (C(3)); 124.6 (C(8)\*\*); 124.9 (C(7)\*\*); 133.3 (C(2)); 141.4 (C(10a)); 141.7 (C(9a)\*\*); 142.1 (C(5a)\*\*); 146.2 (C(4a)); 196.0 (CO) ppm. *m*/*z* 226 (76, M), 211 (100, M – Me), 183 (46, 211 – CO), 155 (4, 183 – CO), 127 (16, 155 – CO).

# Reaction of lithiated N-[2-(dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-2-carboxamide (11) with DMF

Butyllithium (1.47 mol<sup>-1</sup> in hexanes, 0.15 mL, 0.20 mmol) was added dropwise to a stirred solution of 11 (30 mg, 0.10 mmol) in THF (2.5 mL) at -78 °C under  $N_2$ , and after 25 min DMF (30  $\mu$ L, 0.39 mmol) was added. After 1 h the mixture was allowed to warm to room temperature and worked up. PLC (solvent A) gave 2-[2-(dimethylamino)ethyl]-3-hydroxy-1H-[[1,4]dibenzodioxino][2,3-e]isoindol-1-one (73) (18 mg, 54%) which crystallized from  $CH_2Cl_2$  / hexanes as white crystals, m.p. 170-171° C. Anal. Found: C, 66.0; H, 5.3; N, 8.5; M<sup>+-</sup> 326.1262. C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>O<sub>4</sub> calc.: C, 66.3; H, 5.6; N, 8.6%; M<sup>+-</sup> 326.1267).  $\nu_{max}$ (KBr) 3450 (OH), 1600 (CO), 1484 (aryl C=C), 1295, 1285 (C-O), 745 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 2.45 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.57 (br d, J = 13.3 Hz, (CH<sub>a</sub>H<sub>b</sub>)NMe<sub>2</sub>)); 2.81 (7 lines,  $J_{obs} = 2.7$ , 10.8, 13.4 Hz,  $(CH_aH_b)NMe_2$ ; 3.28 (ddd, J = 2.3, 10.9, 15.1 Hz, N( $CH_aH_b$ )); 4.27 (ddd, J = 2.9, 3.8, 15.2 Hz,  $N(CH_aH_b)$ ; 5.85 (s, CHOH); 6.92 (m overlapping with d,  $J_{10.11} = 8.1$ Hz, H(10, 5-8)); 7.32 (d,  $J_{10,11} = 8.0$  Hz, H(11)) ppm; OH not observed.  $\delta$ (C) 39.8  $(N(CH_{a}H_{b})); 44.5 (N(CH_{3})_{2}); 58.6 ((CH_{a}H_{b})NMe_{2}); 80.8 (CHOH); 116.6 (C(5)*);$ 116.9 (C(8)\*); 117.8 (C(10)); 119.1 (C(11)); 124.3 (C(6)\*); 124.4 (C(7)\*); 127.5 (C(3a)); 130.7 (C(11a)); 138.0 (C(3b)); 141.4 (C(4a)\*\*); 141.5 (C(8a)\*\*); 145.6 $(C(9a)); 166.6 (CON) \text{ ppm. } m/z \ 326 \ (2, M), \ 329 \ (1, M - NHCH_2CH_2NMe_2), \ 211$ (1, 239 - CO), 183 (1, 211 - CO), 155 (1, 183 - CO), 127 (2, 155 - CO), 71 (10, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>); and 11 (2 mg, 5%).

# Reaction of lithiated 2-[2-(dimethylamino)ethyl]-3-hydroxy-1H-[[1,4]benzodioxino] [2,3-e]isoindol-1-one (73) with DMF

Butyllithium (1.83 mol  $L^{-1}$  in hexanes, 0.12 mL, 0.22 mmol) was added dropwise to a stirred suspension of 73 (33 mg, 0.10 mmol) in THF (1.5 mL) at -78 °C under N<sub>2</sub>. After 30 min DMF (50  $\mu$ L, 0.65 mmol) was added. After a further 20 min the mixture was worked up. PLC (solvent A) yielded N-[2-(dimethylamino)ethyl]-1-(hydroxypentyl)dibenzo[b,e][1,4]dioxin-2-carboxamide (36) (7 mg, 18%) as a colourless oil. Anal. Found:  $M^+-H_2O$  366.1916.  $C_{22}H_{28}N_2O_4$  calc.: M<sup>+</sup>-H<sub>2</sub>O 366.1943).  $\nu_{max}$ (CHCl<sub>3</sub>) 3650 (OH), 3325 (NH), 1680 (CO), 1508 (amide II), 1485 (aryl C=C), 1285 cm<sup>-1</sup> (C-O).  $\delta$ (H) 0.81 (t, J = 7.3 Hz, CH<sub>2</sub>CH<sub>3</sub>); 1.25 (m,  $CH_2CH_2CH_3$ ); 1.95 (m,  $CH(OH)CH_2$ ); 2.51 (s,  $N(CH_3)_2$ ); 2.83 (m,  $CH_2NMe_2$ ); 3.25 (m, CONHC $H_2$ ); 4.65 (m, CHOH); 6.88 (d,  $J_{3,4} = 8.1$  Hz, H(4)); 6.93 (m, H(6–9), NH); 6.98 (d,  $J_{3,4}$  = 8.0 Hz, H(3)) ppm.  $\delta$ (C) 13.9 (CH<sub>2</sub>CH<sub>3</sub>); 22.6 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>); 24.3 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 30.3 (CH(OH)CH<sub>2</sub>); 37.0 (CONHCH<sub>2</sub>); 44.8 (N(CH<sub>2</sub>)<sub>2</sub>); 56.4 (CH<sub>2</sub>NMe<sub>2</sub>); 59.0 (CHOH); 116.3 (C(9)\*); 116.8 (C(6)\*); 117.3 (C(4)); 119.4 (C(1), C(3)); 124.2 (C(8)\*); 124.4 (C(7)\*); 139.6 (C(2)); 141.5 (C(10a)); 141.6 (C(9a)\*\*); 141.7 (C(5a)\*\*); 141.8 (C(4a)); 166.4 (CONH) ppm. m/z M not observed, 366 (10, M – H<sub>2</sub>O), 296 (6, 366 – C<sub>5</sub>H<sub>10</sub> or 366 – CH=CHNMe<sub>2</sub>), 252 (6, 296 – NMe<sub>2</sub> or 296 –  $C_3H_8$ ), 71 (26, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>); and 73 (7 mg, 21%).

# Reaction of lithiated N-[3-(dimethylamino)propyl]dibenzo[b,e][1,4]dioxin-2-carboxamide (14) with DMF

Butyllithium (1.7 mol L<sup>-1</sup> in hexanes, 0.15 mL, 0.26 mmol) was added dropwise to a stirred solution of 14 (37 mg, 0.12 mmol) in THF (3 mL) at -78 °C under N<sub>2</sub>. DMF (12  $\mu$ L, 0.15 mmol) was added after 3.5 h, and after a further 30 min workup

and PLC (CH<sub>2</sub>Cl<sub>2</sub>/EtOH/Et<sub>3</sub>N, 100:7:1) gave 2-[3-(dimethylamino)propyl]-3-hydroxy-1H-[[1,4]benzodioxino][2,3-e]isoindol-1-one (74) (20 mg, 49%) which crystallized from CH<sub>2</sub>Cl<sub>2</sub>/hexanes as white crystals, m.p. 157–158°C. Anal. Found: C, 66.9; H, 5.8; N, 8.3.  $C_{19}H_{20}N_2O_4$  calc.: C, 67.1; H, 5.9; N, 8.2%.  $\nu_{max}$ (CHCl<sub>3</sub>) 3375 (OH), 1692 (CO), 1488 (aryl C=C), 1295, 1288 (C-O), 760 cm<sup>-1</sup> (aromatic).  $\delta$ (H) 1.72 (m, N(CH<sub>2</sub>H<sub>b</sub>)(CH<sub>2</sub>H<sub>b</sub>)); 2.13 (s, N(CH<sub>3</sub>)<sub>2</sub>); 2.25 (m, N(CH<sub>2</sub>H<sub>b</sub>)(CH<sub>2</sub>H<sub>b</sub>)); 2.48 (apparent t, J = 6.2, 5.6 Hz,  $(CH_aH_b)NMe_2$ ); 3.26 (7 lines,  $J_{obs} = 3.8$ , 10.2, 14.2 Hz, N(CH<sub>a</sub>H<sub>b</sub>)); 3.92 (apparent dt, J = 4.9, 14.2 Hz, (CH<sub>a</sub>H<sub>b</sub>)); 5.81 (s, CHOH); 6.87 (m overlapping d,  $J_{10,11} = 8.0$  Hz, H(10,5-8)); 7.27 (d,  $J_{10,11} = 8.0$  Hz, H(11)) ppm; OH not observed.  $\delta(H)$  24.3 (N(CH<sub>a</sub>H<sub>b</sub>)(CH<sub>a</sub>H<sub>b</sub>)); 40.6 (N(CH<sub>a</sub>H<sub>b</sub>)); 44.0 (N(CH<sub>3</sub>)<sub>2</sub>); 57.1 ((CH<sub>a</sub>H<sub>b</sub>)NMe<sub>2</sub>); 81.8 (CHOH); 116.5 (C(5)\*); 117.0 (C(8)\*); 117.6 (C(10)); 118.6 (C(11)); 124.27 (C(6)<sup>#</sup>); 124.31 (C(7)<sup>#</sup>); 127.9 (C(3a)); 131.9 (C(11a)); 138.0 (C(3b)); 141.5 (C(4a)\*\*); 141.6 (C(8a)\*\*); 145.4 (C(9a)); 166.8(CON) ppm. m/z 340 (52, M), 240 (9, M – HN=CHCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), 239 (15,  $M - NH(CH_2)_3NMe_2$ , 211 (8, 239 – CO), 183 (5, 211 – CO), 127 (7, 183 – CO), 86 (20,  $(CH_2)_3NMe_2$ ), 72 (23,  $CH_2CH_2NMe_2$ ), 58 (100,  $CH_2NMe_2$ ).

#### N,N-bis[2-(Dimethylamino)ethyl]dibenzo[b,e][1,4]dioxin-1,9-dicarboxamide (38)

A mixture of the amide-ester **23** (10 mg, 0.05 mmol) and *N*,*N*-dimethyl-1,2ethanediamine (100  $\mu$ L, 0.91 mmol) was heated in a vial at *ca*. 110 °C for 5 h. Removal of excess amine and chromatography on alumina (CH<sub>2</sub>Cl<sub>2</sub>/EtOH, 10:1) gave *N*,*N*-bis[2-(dimethylamino)ethyl]dibenzo[*b*,*e*][1,4]dioxin-1,9-dicarboxamide (**38**) (7 mg, 44%) which crystallized from Me<sub>2</sub>CO/ hexanes as white crystals, m.p. 183–185 °C. Anal. Found: M<sup>+</sup> 412.2108. C<sub>22</sub>H<sub>28</sub>N<sub>4</sub>O<sub>4</sub> calc.: M<sup>+</sup> 412.2111).  $\nu_{max}$ (KBr) 3375 (NH), 1642 (CO), 1530 (amide II), 1450 (aryl C=C), 1280 cm<sup>-1</sup> (C–O).  $\delta$ (H) 2.30 (s, 2xN(CH<sub>3</sub>)<sub>2</sub>); 2.59 (apparent t, *J* = 6.5 Hz, 2xCH<sub>2</sub>NMe<sub>2</sub>); 3.59 (apparent q, 6.3, 5.6, 6.3 Hz, 2xCONHCH<sub>2</sub>); 6.98 (m, H(3,4,6,7)); 7.45 (dd, *J* = 2.4, 7.0 Hz, H(2,8)); 7.74 (s, 2xNH) ppm.  $\delta$ (C) 37.7 (2xNHCH<sub>2</sub>); 45.4 (2xN(CH<sub>3</sub>)<sub>2</sub>); 58.0 (2xCH<sub>2</sub>NMe<sub>2</sub>); 119.0 (C(4,6)); 122.9 (C(1,9)); 123.9 (C(2,8)); 124.6 (C(3,7)); 140.2 (C(9a,10a)); 142.3 (C(4a,5a)); 164.4 (2xCONH) ppm. *m/z* 412 (<1, M), 410 (<1, M – H<sub>2</sub>), 408 (<1, 410 – H<sub>2</sub>), 271 (5, M – CH<sub>2</sub>=CHNMe<sub>2</sub>–CH=CHNMe<sub>2</sub>), 239 (3, M – NHCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>–HN=CHCH<sub>2</sub>NMc<sub>2</sub>), 71 (23, CH<sub>2</sub>=CHNMe<sub>2</sub>), 58 (100, CH<sub>2</sub>NMe<sub>2</sub>), 44 (NMe<sub>2</sub>).

The bisamide 38 was also prepared (23%) by treatment of the diester 18 with N,N-dimethyl-1,2-ethanediamine as above.

#### References

- 1 B.D. Palmer, G.W. Rewcastle, G.J. Atwell, B.C. Baguley and W.A. Denny, J. Med. Chem., 31 (1988) 707.
- 2 M. Tomita, J. Pharm. Soc. Jpn., 52 (1932) 49.
- 3 H. Gilman and J.J. Dietrich, J. Am. Chem. Soc., 79 (1957) 1439.
- 4 A. Pohland and G.C. Yang, J. Agric. Food. Chem., 20 (1972) 1093.
- 5 A.P. Gray, S.P. Cepa, J.J. Solomon and O. Aniline, J. Org. Chem., 41 (1976) 2435.
- 6 H.H. Lee and W.A. Denny, J. Chem. Soc. Perkin Trans. I, (1990) 1671.
- 7 V.V. Litvak, L.I. Goryunov and V.D. Shteingarts, J. Org. Chem. USSR (Eng. Trans.), 22 (1981) 138.
- 8 R.G. Sutherland, A. Piorko, C.C. Lee, S.H. Simonsen and V.M. Lynch, J. Heterocyclic Chem., 25 (1988) 1911.
- 9 H. Gilman and C.G. Stuckwisch, J. Chem. Soc. C, (1968) 2261.
- 10 G. Soula, J. Org. Chem., 50 (1985) 3717.

- 11 I.U. Khand, P.L. Pauson and W.E. Watts, J. Chem. Soc. C, (1968) 2261.
- 12 A.N. Nesmeyanov, N.A. Vol'kenau, I.N. Bolosova and L.S. Polkovnikova, Koord. Khim., 1 (1975) 1252 (Chem. Abstr., 84 (1976) 5119).
- 13 U.S. Gill and R.G. Sutherland, Synth. Commun., 16 (1986) 467.
- 14 R.G. Sutherland, A. Piorko, U.S. Gill and C.C. Lee, J. Heterocyclic Chem., 19 (1982) 801.
- 15 J.C. Boutonnet and E. Rose, J. Organomet. Chem., 221 (1986) 79.
- 16 C.C. Lee, A.S. Abd-El-Aziz, R.L. Chowdhury, U.S. Gill, A. Piorko and R.G. Sutherland, J. Organomet. Chem., 315 (1986) 79.
- 17 E.J. Corey, N.W. Gilman and B.E. Ganem, J. Am. Chem. Soc., 90 (1968) 5616.
- 18 H. Firouzabadi and E. Ghaderi, Tetrahedron Lett., (1978) 839.
- 19 C.A. Ramsden, J. Chem. Soc. Perkin Trans. I, (1981) 2456.
- 20 L.J. Bellamy, The Infrared Spectra of Complex Molecules, Methuen, London; 2nd edition, Wiley, New York, 1958.
- 21 T.D. Krizan and J.C. Martin, J. Am. Chem. Soc., 105 (1983) 6155.
- 22 J.C. Wilburn and R.H. Neilson, Inorg. Chem., 18 (1979) 347.
- 23 M. Daney, R. Lapouyade, B. Labrande and H. Bouos-Laurent, Tetrahedron Lett., 21 (1980) 153.
- 24 E.J. Bures and B.A. Keay, Tetrahedron Lett., 28 (1987) 5965.
- 25 R. West, Adv. Organomet. Chem., 16 (1977) 1.
- 26 R.C. Cambie, S.A. Coulson, L.G. Mackay, S.J. Janssen, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 409 (1991) 385.
- 27 H. Weingarten, J. Org. Chem., 29 (1964) 3624.
- 28 N.E. Sharpless, R.B. Bradley and J.A. Ferretti, Org. Magn. Res., 6 (1974) 115.
- 29 N.P. Buu-Hoi, G. Saint-Ruf and M. Mangane, J. Heterocyclic Chem., 9 (1972) 691.
- 30 C.A.L. Mahaffy and P.L. Pauson, Inorg. Synth., 19 (1979) 154.
- 31 F.E. King, J.H. Gilks and M.W. Partridge, J. Chem. Soc., (1955) 4206.
- 32 R.M. Moriarty and U.S. Gill, Organometallics, 5 (1986) 253.
- 33 M. Tashiro, T. Itoh and G. Fukata, Bull. Chem. Soc. Jpn., 57 (1984) 416.
- 34 J.F.W. McOmie and D.S. West, Org. Synth. Coll., 5 (1973) 412.
- 35 H. Gilman and J.J. Dietrich, J. Org. Chem., 22 (1957) 1403.
- 36 G. Vasiliu and I. Baciu, An. Univ. Bucuresti, Ser. Stiint. Natur., 15 (1966) 125 (Chem. Abstr., 68 (1968) 59509).
- 37 H.J. Klosterman and R.Z. Muggli, J. Am. Chem. Soc., 81 (1959) 2188.
- 38 G. Vasiliu and I. Baciu, Rev. Chim. (Bucharest), 22 (1971) 6 (Chem. Abstr., 74 (1971) 111974).
- 39 B.D. Palmer, M. Boyd and W.A. Denny, J. Org. Chem., 55 (1990) 438.
- 40 H. Ishii, M. Konno, M. Wakabayashi, F. Kuriyagawa and N. Ikeda, Yakugaku Zasshi, 9 (1970) 1298 (Chem. Abstr., 74 (1971) 12291).
- 41 M. Tomita, J. Pharm. Soc. Jpn., 56 (1936) 814.
- 42 R.H. Mitchell, Y.-H. Lai and R.V. Williams, J. Org. Chem., 44 (1979) 4733.